• Title/Summary/Keyword: PTFE Composite

Search Result 51, Processing Time 0.022 seconds

A Study on the Wear and Lubricating Properties of Porous PTFE Composite (다공성 PTFE 복합소재의 마모 및 윤활 특성 연구)

  • Kim, Y.S.;Kim, H.Y.;Ju, C.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.81-85
    • /
    • 2011
  • Because of excellent mechanical properties, such as good friction coefficient and heat resistance characteristics, PTFE parts have been widely used in the industries. However, the poor wear resistance of PTFE has been a main problem limiting wider applications. In this study, to improve the poor wear resistance of PTFE, porous PTFE composites were prepared by mixing additives(sodium bicarbonate and graphite) with PTFE powder. The friction coefficient, wear resistance and lubricating property of porous PTFE composites were measured and the results were compared with those of untreated PTFE.

Preparation and Dielectric Characteristics of PTEE(Polytetrafluoroethyl one) Composites for Microwave Circuit Board (고주파용 회로기판을 위한 PTEE(Polytetrafluoroethylene) 복합체의 제조 및 유전 특성)

  • 윤기현;정도환;양병덕;장재혁;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.735-738
    • /
    • 2003
  • The PTFE composites for the microwave printed circuit board were prepared using woven glass fiber. The dielectric constant of the PTFE composites with oven glass fiber tended to decrease with an increase of immersion time, and was saturated at 3 times immersion. It resulted from the fact that fine powders of PTFE filled up at the pore and bend of woven glass fiber sufficiently. As the immersion time increased, the propagation velocity increased due to the reduction of dielectric constant.

A Study on the Effects of Friction and Wear Properties of PTFE Composites for Oil Free Air Compressor (무급유공기압축기 개발을 위한 PTFE계 복합재료의 마찰마모 특성에 관한 연구)

  • 김용직;정하돈;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.67-74
    • /
    • 2000
  • Recently, PTFE-polymide composites are being used self-lubricating parts for industrial field. Thus, this study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polymide composites. The friction and wear test was carried out for the different composition ratio under the atomsphere room temperature and constant load of 7.69N and their friction and wear properties were compared with each other at various sliding speed. notable results are summarized as follows. PTFE 100% showed that friction coefficient was almost same values at 0.94 and 1.88m/s but the value was decreased at 2.83m/s because the friction temperature is higher than low speed. PTFE 80%-PI 20% showed the lowest mean friction coefficient at 2.83m/s. PTFE 20-PI 80% showed the highest friction coefficient at 0.94m/s and the value was decreased at high speed but the value is higher than other materials except PTFE 100 %. PI 100% showed the highest friction coefficient at 0.94 and 1.88m/s becuase adhesive wear mainly occurred that speed. PTFE 100% showed highest specific wear rate on the whole. Specific wear rate of PTFE 80%-PI 20% was almost the same value with PTFE 20%-PI80%. PI 100%showed the lowest value at high sliding speed because the friction surface was thicken and carbonated by high friction temperature.

  • PDF

Sulfonated Polystyrene/PTFE Composite Membranes for Direct Methanol Fuel Cell (직접 메탄올 연료전지를 위한 술폰화 폴리스티렌/테플론 복합막 제조 및 특성연구)

  • 김정훈;신정필;박인준;이수복;서동학
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.173-184
    • /
    • 2004
  • For the application of direct methanol fuel cell (DMFC), sulfonated polystyrene/teflon (PS/PTFE) composite membranes were developed by changing monomer ratio of styrene and DVB. The composite membranes were prepared as follows: first, the monomer mixtures consisting of styrene, divinyl benzene and AIBN were impregnated in porous PTFE film and then, polymerized under 8$0^{\circ}C$ to give PS/PTFE membranes. Finally, the membranes were reacted with chlorosulfonic acid in 1,2-dichloroethane to give the sulfonated composite membranes. The measurements of ATR-FTIR, SEM, solvent uptake test and ion exchange capacity (IEC) were done for the resulting membranes before or after sulfonation, respectively, which showed the composite membranes with proper crosslinking degree and sulfonic acid content were prepared well as a function of styrene/DVB ratio. ion conductivity and methanol permeability were studied for the sulfonated membranes. It was found that with decreasing the ratio of styrene/DVB, methanol permeability decreased from $6.6{\times}10^{-7}∼1.3{\timas}10^{-7}$ $\textrm{cm}^2$/s, which are much lower values than that of Nafion$^{(R)}$117($1.02{\times}10^{-6}$ $\textrm{cm}^2$/s). Under the same monomer condition, ion conductivity decreased from 0.11 S/cm ($25^{\circ}C$) to 0.08 S/cm ($25^{\circ}C$), which are similar or a little higher values compared with $Nafion^{(R)}117 (1.02{\times}10^{-6}$ $\textrm{cm}^2$/s, 0.0824 S/cm). These two results confirmed the composite membranes prepared could be applied successfully to DMFC.C.

Removal of Volatile Organic Compounds from Water Using PU/PDMS-PTFE Composite Membranes by Vapor Permeation Separation Process (PU/PDMS-PTFE 복합막을 이용한 증기투과공정에 의한 물로부터 휘발성 유기화합물 제거)

  • Rhim Ji Won;Cheon Se Won;Yun Tae Ihl;Shin Hyun Su;Kim Baek Ahm;Chung Rae Ick
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.44-51
    • /
    • 2005
  • Polyurethane-polysiloxanes (PU/PDMS) was synthesized using 4,4'-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BD) to overcome the weakness to the organic chemicals. The composite membranes were prepared onto porous poly(tetrafluoroethylene) (PTFE) supports. In vapor permeation experiments, the flux increased with increasing operating temperatures and feed concentrations while the separation factors showed the opposite trend, so-called 'trade-off'. In this study, the effect of the flux on the operating temperatures was not severe since the content of the soft segments is fairly higher than that of the hard segments. The composite membrane type of PU/PDMS maintained high flux and separation factor as well when comparing with the dense type membranes.

Study on the Oil Seal Application Using Polytetrafluoroethylene Composites (Polytetrafluoroethylene 복합재료를 이용한 오일씰 응용에 관한 연구)

  • Ha, Ki-Ryong;Lee, Jong-Cheol;Lee, Young-Seok
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.32-39
    • /
    • 2010
  • The mechanical properties of PTFE 100%, PTFT 90% + carbon black 10%, PTFE 85% + glass fiber 15%, PTFE 80% + glass fiber 15% + molybdenum disulfide ($MoS_2$) 5%, PTFE 75% + glass fiber 25%, and PTFE 75% + carbon black 18% + graphite 7% composites were investigated in this study. The differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to examine the heat of fusion(${\Delta}H_f$) and thermal stability of the composites. Also, the wear surface and wear volume of PTFE lip seal were examined using the durability test. Wear surface was observed using scanning electron microscope (SEM). It was found that the hardness, wear resistance and durability were enhanced by adding glass fiber and molybdenum disulfide into pure PTFE, but tensile strength and elongation were decreased. According to the experimental results, the composite (PTFE + 15% glass fiber + 5% molybdenum disulfide) showed the best properties for applying to oil-seal among six types of PTFE composites.

A Study on the Effects of Additives on the Friction and Wear Properties of PTFE Composite (첨가제에 의한 PTFE 복합재료의 마찰마모 특성에 관한 연구)

  • 김용직;김윤해
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.11-18
    • /
    • 2000
  • This study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polyimide composites. At the PTFE and polyimide alone mixture specimens, PTFE80%-polyimide20%, which shows the lowest mean friction coefficient and specific wear rate at 0.94m/s sliding speed. In case of the specific wear rate, copper30% specimen shows the lowest value of 2.537-5(mm3/Nm) in all specimens. It considered that the friction coefficient is affected by generating speed and quantity of wear film. In case specific wear rate, it is attributed to the fact that the surface hardness of wear film is proportioned to specific wear rate.

  • PDF

Emulsion Electrospinning of Hydrophobic PTFE-PEO Composite Nanofibrous Membranes for Simple Oil/Water Separation

  • Son, Seo Ju;Hong, Seong Kyung;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.89-92
    • /
    • 2020
  • Polytetrafluoroethylene (PTFE) fibers are widely used in the textile industry, filter media, membrane distillation, electronic appliances, and construction. In this study, PTFE-polyethylene oxide (PEO) fibrous membranes were fabricated by emulsion electrospinning; subsequently, pure PTFE nanofibers were obtained via sintering. PTFE-PEO electrospinning solutions were prepared using different weight ratios to determine the optimized condition. As the ratio of the PEO increased, the fiber structure improved. Scanning electron microscopy and Fourier-transform infrared spectroscopy observations indicate that PEO is removed and PTFE fused gradually to form bonds among them during sintering. The obtained pristine PTFE membrane demonstrated hydrophobicity at 143.6° water contact angle and oleophilicity at 0° oil contact angle, which is known to be utilized for oil/water separation. A simple separation experiment was performed to remove oil droplets from water. The PTFE membrane exhibited good chemical stability and a high surface-area-to-volume nanofiber ratio. These excellent properties suggest that it is applicable to oil/water separation in harsh chemical environments.

Radiolytic Fabrication and Characterization of PTFE-g-PAA as the Supporters for the Reinforced Composite Fuel Cell Membrane (방사선을 이용한 강화 복합 연료전지막 다공성 지지체용 PTFE-g-PAA 제조 및 특성 연구)

  • Sohn, Joon-Yong;Park, Byeong-Hee;Song, Ju-Myung;Lee, Young-Moo;Shin, Junhwa
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.649-655
    • /
    • 2013
  • In order to use as supporters for the reinforced composite fuel cell membrane, poly(acrylic acid)-grafted porous polytetrafluoroethylenes (PTFEs) were prepared via introduction of poly(acrylic acid) graft chains by a radiation grafting method. FTIR was utilized to confirm the successful introduction of poly(acrylic acid) graft polymer chains into the porous PTFEs. Contact angles were examined to observe the hydrophilicity of the surface of the prepared substrates. The result indicates that the hyrophilicity of the surface in the prepared substrates increases with an increase in the number of hydrophilic polymer chains. FE-SEM, gurley number, and tensile strength were also utilized to characterize the prepared substrates.

A Study on the Tribological Characteristics of a Frying Pan Coated with PTFE and Nano-Diamond (나노다이아몬드가 첨가된 프라이팬 불소수지코팅의 Tribological 특성 연구)

  • Lee, Jin-Ho;Kim, Hyun-Soo;Yoon, Han-Ki;Kim, Tae-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.99-104
    • /
    • 2009
  • PTFE has good mechanical and chemical stability at a wide range of temperatures and demonstrates a low friction coefficient value. PTFE is being used for self-lubricating parts in industry. But it shows a high wear rate. Thus, PTFE and nano-diamond powder were mixed into a composite and the wear properties of a PTFE coating layer on Al6061 was investigated. A ball-on-disk type of wear tester was used under a dry condition and different temperatures of oil. After the wear test, the wear track wasexamined by optical microscope. The PTFE-diamond showed the lowest friction coefficient (0.02) of all the lubricants in the experiments. The friction coefficient was shown to be directly related to the diamond powder in the PTFE coating. Adhesion estimations were performed by a scratch test, which is mainly used for coatings. The critical load between the coating and substrate was defined through analyses of the friction load, normal load curve, and acoustic emissions, along with optical microscope observations. The scratch test results showed that an import item (SWISS) gave the highest critical load values.