• Title/Summary/Keyword: PTC (positive temperature coefficient)

Search Result 60, Processing Time 0.022 seconds

Fabrication of SMD Type PTC Thermistor with Multilayer Structure

  • Kim, Yong-Hyuk;Lee, Duck-Cuool
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.76-82
    • /
    • 2000
  • PTC thermistors with multilayer structure were fabricated by internal electrode bonding technique in order to realize low resistance. MLPTC (Multilayer Positive Temperature Coefficient) possess various features, such as small size, low resistivity and large current. We describe the effect of additives on the PTC characteristics, voltage - current characteristics, temperature dependence of resistance and complex impedance spectra as a function of frequency range 100 Hz to 13MHz to determine grain boundary resistance. It was found that MLPTC thermistor has both highly nonlinear effects of temperature dependent resistance and voltage dependent current behaviors, which act as passive element with self-repair mechanisms. Decrease of room temperature resistance with increasing the number of layers was demonstrated to be a grain boundary effect. Switching characteristics of current were caused by heat capacity of PTC thermistor with multilayer structure. Switching times are lengthened by increasing the number of layers.

  • PDF

The PTC Characteristics of High Density Polyethylene/Carbon Black/MWCNTs Hybrid Nanocomposites (HDPE/Carbon Black/MWCNTs Hybrid 나노복합재료의 PTC 특성)

  • Kim, Sung-Kwan;Lee, Joong-Hee
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.71-74
    • /
    • 2005
  • In this paper, the effects of the MWCNTs on the PTC characteristics of the conventional CB/polymer nanocomposites were investigated. For the uniform dispersion of the MWCNTs in the polymer matrix., nitricacid-treated MWCNTs were dispersed with the dissolved HOPE in the solvent. After evaporating solvent, the dried master batches in the oven were melt blended mixed with CB and HDPE to obtain the PTC materials. The initial resistivity of PTC materials decreased and the PTC intensity increased with the MWCNTs. During three repeated heating and cooling cycles, the PTC materials containing MWCNTs showed a great reproducibility due to the conductive network structures of CB particles and MWCNTs.

  • PDF

Theoretical Aspects of PTC Thermistors

  • Cho, Sang-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.673-679
    • /
    • 2006
  • The discovery of ferroelectric barium titanate (BaTiO$_3$) in 1942 began the present era of dielectrics-based electronic ceramics. Ferroelectric barium titanate has a high dielectric constant and after the recognition of BaTiO$_3$ as a new ferroelectric compound, various attractive electrical properties have been extensively studied and reported. Since then, pioneering work on valence-compensated semiconduction led to the discovery of the positive temperature coefficient (PTC) of the resistance effect found in doped BaTiO$_3$. Significant progress has since followed with respect to understanding the PTC phenomena, advancing materials capabilities, and developing devices for sensor and switching applications. In this paper, the theoretical aspects of the various PTC models are discussed and the future trends of practical applications for PTC devices are briefly mentioned.

Electrical Properties of Nanostructured Carbon Black-filled HDPE Composites: Effect of Electron Beam Irradiation on PTC Characteristics (나노구조 카본블랙/HDPE 복합재료의 전기적 특성: 전자선 조사에 의한 PTC 특성변화)

  • 박수진;송수완;서민강;이재락
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.19-25
    • /
    • 2003
  • In this paper, electrical properties of nanostructured carbon blacks (CB)-filled high density polyethylene (HDPE) composites were investigated as a function of temperature, which were prepared by the conventional melt-mixing method. The composites were irradiated with electron beam in a dosage of 30∼150 kGy to enhance an electronical reproducibility and to reduce a negative temperature coefficient (NTC) phenomenon. And, gel contents (%) of irradiated CB/HDPE composites were estimated by solvent extraction method. From the experimental results. the positive temperature coefficient (PTC) intensity of the composites was strongly depended on the CB content and particle size. And, the increase of gel contents (%) and disappearance of NTC behavior of the composites were identified at a dosage of 60 kGy. It was also found that the electron beam irradiation made an improvement of electrical reproducibility of the composites. This result was probably due to the reduction of the freedom of CB movement at above the melting temperature of the polymer crystalline, resulting in increasing the crosslinking structure of the composites.

Defrosting Behavior of Fin-Tube Heat Exchanger with PTC Heating Sheet

  • Jhee, Sung;Lee, Kwan-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.29-38
    • /
    • 2001
  • In this paper, the defrosting characteristics of a PTC heating sheet is investigated by means of a defrosting heat source for the fin-tube heat exchanger in a refrigerator The defrosting characteristics of the PTC heating sheet are examined and compared with those of a conventional electric heater experimentally. It is found that the characteristics of the water draining rate with the defrosting time show a smoothly oscillating pattern when the PTC heating sheet Is used, and the drained water is completely melted. The defrosting efficiency of the PTC heating sheet is found to be about 75%, which is about 25% higher than that of the electric heater. Also, the reduction of the defrosting time and the increment of the defrosting efficiency may be obtained by improving the arrangement of the heating elements of the healing sheet. It is shown that the defrosting time of the PTC heating sheet increases linearly with the amount of frost, whereas the defrosting efficiency is nearly constant. When applying the PTC heating sheet to the refrigerating system, one should notice the fact that the defrosting performance of the PTC heating sheet may be degraded due to the repetitive operations.

  • PDF

Development of PTC elements for limiting short circuit current in low voltage power systems (저압계통의 단락전류 제한을 위한 PTC 소자 개발)

  • Kang, J.S.;Lee, B.W.;Oh, I.S.;Kwon, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.18-20
    • /
    • 2005
  • 일반적으로 저압계통의 고장전류를 차단하기 위해 설치된 차단기의 차단원리는 주로 역전압발생법올 이용하고 있다. 역전압발생법은 효과적으로 저압계통의 고장전류를 차단할 수 있으나, 제한된 한류성능과 긴 아킹 시간은 차단기는 물론 주변 전력기기에 전기적/열적/기계적 스트레스를 주게 된다. 국내외 업체는 고장전류를 보다 빠르고 효과적으로 제한 및 차단을 할 수 있는 한류형 차단기를 제안하고 있는 실정이다. 저압계통의 경우, 정온도계수 (Positive Temperature Coefficient, PTC) 특성을 가지는 한류소자를 기존 차단기에 직렬 혹은 병렬로 연결하여 저압계통의 고장전류를 매우 빠르고 효과적으로 제한 및 차단하는 추세에 있으며, 또한 PTC 한류소자를 이용함으로써 저압계통의 차단보호협조를 효과적으로 구현하고자 하고 있다. PTC 한류소자는 소자는 열팽창이 큰 비전도성 성분과 열팽창이 작은 전도성 성분이 혼합되어 구성되며, 소자의 온도가 증가함에 따라 비전도성 성분이 상대적으로 큰 부피 팽창을 하여 저항이 증가하게 된다. 이러한 PTC 소자를 전력계통에 적용함으로써 고장전류에 따른 줄열에 의한 저항증가로 고장전류를 제한하게 된다. 본 연구에서는 일반적으로 배터리 보호용으로 사용되는 폴리에틸렌 수지 및 카본블랙으로 구성된 폴리머 PTC 한류소자를 이용하여, 기존의 저전력 배터리 보호 폴리머 PTC 소자로부터, 저압계통의 단락사고시 발생하는 단락전류를 효과적으로 제한할 수 있는 대전력 폴리머 PTC 소자를 개발하였다.

  • PDF

Polymer형 내열성 PTC 소재의 특성 연구

  • 강영구;곽봉신
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1999.06a
    • /
    • pp.249-252
    • /
    • 1999
  • 전도성 충진제가 포함된 결정성 고분자내에 대전류가 흐르게 될 경우 Joule 효과로 소재자체의 발열현상이 발생하며 온도가 증가함에 따라 고분자의 용융점 부근에서 급격한 열팽창으로 인하여 고분자 내에 분포되어 있던 전도성 충진재 입자사이의 간격이 증가하게 되며 전자들의 흐름이 방해를 받게 된다. 이에 따라 전기저항이 커져 전류의 흐름이 감소되는 철상이 발생하며 이를 PTC(Positive Temperature Coefficient)라 하고 온도 증감에 따른 전도성 충진제 간의 electron tunnelling과 고분자의 결정변화에 의해 민감한 전기저항변화 특성을 나타낸다. (중략)

  • PDF

An experimental study of defrosting behaviors on the fin-tube heat exchanger with PTC heating sheet (PTC 전열시트를 사용한 핀-관 열교환기의 제상 특성에 관한 실험적 연구)

  • Jhee, S.;Lee, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.147-155
    • /
    • 1999
  • In this work, the defrosting characteristics of PTC heating sheet used as a defrosting heat source of fin-tube heat exchanger in a refrigerator have been experimentally compared with those of conventional electric heater. It is found that the characteristics of water draining rate with defrosting time show smoothly oscillating pattern when PTC heating sheet is used, and the drained water is completely melted. The defrosting efficiency of the PTC heating sheet is about 75%, which represents about 25% higher than that of the electric heater. A reduction of defrosting time and an increase of defrosting efficiency may be obtained by improving the arrangement of heating elements of the heating sheet. It is shown that the defrosting time of PTC heating sheet increases linearly with the amount of frost, however the defrosting efficiency is nearly constant. In the application to the refrigerating system, one should notice the fact that the defrosting performance of PTC heating sheet may be defraded due to the repeated operations.

  • PDF

Positive Temperature Coefficient of Resistivity(PTCR) Behavior of Nb2O5 Added Ba0.99(Bi0.5Na0.5)0.01TiO3 Ceramics as a Function of Sintering Time (Nb2O5 첨가와 소결시간에 따른 Ba0.99(Bi0.5Na0.5)0.01TiO3 세라믹스의 PTCR 특성)

  • Oh, Young-Kwang;Choi, Seung-Hun;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.559-562
    • /
    • 2011
  • In this study, the effect of $Nb_2O_5$ and sintering time on the positive temperature of coefficient of resistivity (PTCR) behavior of lead free $Ba_{0.99}(Bi_{0.5}Na_{0.5})_{0.01}TiO_3$ (BBNT) ceramics were investigated in order to fabricate a PTC thermistor with high $T_c$ temperature more than $140^{\circ}C$. In particular, BBNT ceramic doped with 0.1mol% $Nb_2O_5$ and sintered at $1350^{\circ}C$ for 4 h has significantly increased Curie temperature ($T_c$) of about $200^{\circ}C$, showed good PTCR behavior of room-temperature resistivity ($\rho_{rt}$) of $40{\Omega}{\cdot}cm$, a high $\rho_{max}/\rho_{min}$ ratio of $43.78{\times}10^3$ and a large resistivity temperature factor (${\alpha}$) of 16.1%/$^{\circ}C$. With increasing addition of $Nb_2O_5$ content, the $\rho_{rt}$ decreased to a minimum value of $40\;{\Omega}cm$ at 0.1mol% $Nb_2O_5$ and the $\rho_{rt}$ increased for x value over 0.1 mol%.

A study on Optimal Design for the Inductance and Coreloss of Plate Type Induction Heater for Electric Vehicle (전기자동차용 판형 인덕션 히터의 인덕턴스 및 철손 최적설계 연구)

  • Kang, Jun-Kyu;Jo, Byoung-Wook;Kim, Ki-Chan
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.10
    • /
    • pp.425-430
    • /
    • 2018
  • The battery system of an electric vehicle suffers from the problem the battery output and the service life decrease at low temperature. A Positive Temperature Coefficient(PTC) heater is used for maintaining room temperature but is heavy due to a complicated insulation structure. The larger the weight is, the lower the fuel economy of the electric vehicle is. On the other hand a induction heater have a simple insulation structure, which is effective in weight reduction and has a rapid temperature rise. The induction heater consists of an LC resonance circuit. The larger the capacitance is, the higher the price and weight is. Therefore, the inductance should be increased to reduce the capacitance. Also, the main heat source of the induction heater is coreloss. So, it is important to optimize inductance and coreloss in terms of electromagnetic field design. In this paper, the inductance and the coreloss according to the change of the induction heater structure were optimized through the Taguchi method and Finite Element Method(FEM) simulation.