• Title/Summary/Keyword: PSU%

Search Result 521, Processing Time 0.023 seconds

Acoustic Channel Formation and Sound Speed Variation by Low-salinity Water in the Western Sea of Jeju during Summer (여름철 제주 서부해역의 저염분수로 인한 음속변화와 음파채널 형성)

  • Kim, Juho;Bok, Tae-Hoon;Paeng, Dong-Guk;Pang, Ig-Chan;Lee, Chongkil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • Salinity does not generally affect sound speed because it shows very small variations in the ocean. However, low salinity water appears in the Western Sea of Jeju Island every summer so that sound speed and sound propagation can change near sea surface. We calculated Sound Speed Profile (SSP) using vertical profiles of temperature and salinity, which were averaged over years of normal salinity and low salinity (<28 psu) from 30 years (1980~2009) at 3 sites of Korea Oceanographic Data Center (KODC). As a result, sound speed variation by low salinity alone was -5.36 m/s at sea surface and -1.35 m/s at 10m depth for low salinity environments. Gradient of SSP was positive down to 5 m depth due to decrease of sound speed near surface, leading formation of haline channel. Simulation of acoustic propagation using a ray model (Bellhop) confirmed the haline channel. Haline channel has formed 4 times while hydrostatic channel controlled by only pressure has formed 9 times for 30 years. The haline channel showed larger critical angles of rays than hydrostatic channel. Haline channel was also formed at some sites among 20 measurement sites in low salinity water mass which appeared on August $1^{st}$ 2010.

Isotopic Evidence for Ontogenetic Shift in Food Resource Utilization during the Migration of the Slipmouth Leiognathus nuchalis in Gwangyang Bay, Korea (광양만 주둥치(Leiognathus nuchalis)의 서식처 이동에 의한 먹이원 변동 파악을 위한 안정동위원소 분석기법 적용)

  • Choi, Bohyung;Jo, Hyunbin;Park, Kiyun;Kwak, Ihn-Sil
    • Korean Journal of Ichthyology
    • /
    • v.32 no.2
    • /
    • pp.84-90
    • /
    • 2020
  • We investigated carbon and nitrogen isotope ratios (δ13C and δ15N) of the slipmouth Leiognathus nuchalis to reveal the effects of body size, feeding strategy and spatial distribution on the food resource utilization during the migration in the Seomjin estuary and Gwangyang Bay. The δ13C values of L. nuchalis caught in the Seomjin estuary where the salinity is lower than 30 psu were much lower than those in the deep-bay area of Gwangyang Bay. Such a spatial heterogeneity in δ13C values of the L. nuchalis clearly indicates active feeding within the estuarine habitat. In contrast, the δ15N values of L. nuchalis showed a consistency among sites, indicating that this species occupies identical trophic level across the whole area. The slipmouth distributed throughout the bay area, reflecting its euryhaline characteristics. However, the distribution pattern appeared to be separated according to body size into smaller individuals in the low-saline estuary and larger ones in the deep bay. Overall results support the plastic feeding strategy of the slipmouth from zooplanktonic (estuarine habitat) to epibenthic (deep-bay habitat) feeder during the migration between estuarine to deep-bay habitats.

Spat culture of the hard shelled mussel Mytilus coruscus in seawater pond (축제식 양식어장을 활용한 홍합 치패의 중간육성)

  • Lee, Hak Bin;Oh, Jeong Kyu;Moon, Jae Hak;Jo, Hyun Jeong;Jo, Soo-Gun;Kim, Hyung Seop
    • The Korean Journal of Malacology
    • /
    • v.32 no.3
    • /
    • pp.203-209
    • /
    • 2016
  • Growth and survival of the hard shelled mussel spat were investigated to confirm the possibe spat culture in seawater pond from September 2014 to April 2015. Also, we measured simultaneously environmental factors including water temperature, salinity, dissolved oxygen, pH, DIN, DIP, chlorophyll a, and abundance and dominant species of phytoplankton in seawater pond every month. Ranges of water temperature and salinity were $4.0-23.4^{\circ}C$ and 18.8-25.2 psu, respectively, which were rather lower than the reported optimal level. Monthly measured survival rates in all the spat cages were over 90%. Concentration of chlorophyll-a and abundance of phytoplankton were very high, and dominant species phytoplankton were cryptomonads and nanoflagellates. These dominant species were considered to be good food organisms for the bivalve spat. The experimental cage stocked 100 individuals per basket ($2,700ind.\;m^{-2}$) hanging in bottom of seawater pond revealed the highest growth in shell height ($7.63{\pm}4.65mm$), but all experimental cages stocked below 200 individuals per basket ($5,400ind.\;m^{-2}$) did not show statistically significant difference. We may expect that seawater pond would be one of the best culture ground for bivalve spats when appropriate measures are available.

Comparison of Physiological Conditions on Black Porgy, Acanthopagrus schlegeli Acclimated and Reared in Freshwater and Seawater (담수 및 해수에서 순화 사육한 감성돔, Acanthopagrus schlegeli의 생리상태 비교)

  • Min Byung Hwa;Choi Cheol Young;Chang Young Jin
    • Journal of Aquaculture
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2005
  • This study was conducted to compare the physiological conditions of black porgy (Acanthopagrus schlegeli) when reared in freshwater (0 psu) and seawater (35 psu) during 90 days. In terms of stress response, there was no significant difference in cortisol levels of the fish reared either freshwater or seawater until 60 days. Although cortisol level of fish reared in freshwater(12.6$\pm$5.0 ng/ml) was significantly higher than in seawater (4.5$\pm$2.9 ng/ml) at the end of experiment, these values were stable levels as compared with that of non-stressed fish. No significant differences in plasma osmolalities were recognized between the fish reared in freshwater (346.7$\pm$4.6$\~$356.5$\pm$2.1 mOsm/kg) and seawater (350.0$\pm$2.0$\~$357.0$\pm$22.6 mOsm/kg). Normal structure of gill lamellae without histological damage or cell necrosis has been observed in the fish reared in freshwater. In connection with growth and survival rate, total length and body weight of fish reared in freshwater were slightly longer and higher than those of fish reared in seawater. Survival rate of black porgy reared in freshwater was slightly higher than that of fish reared in seawater, but there was no significant difference. The results suggest that black porgy is reared with normal growth rate in freshwater without stress.

Mesozooplankton Community Dynamics in Watan Stream, Yeonggwang, Korea (영광 와탄천의 중형동물플랑크톤 군집동태)

  • Lee, Dong-Ju;Kim, Say-Wa;Lee, Won-Choel
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.4
    • /
    • pp.425-432
    • /
    • 2009
  • Mesozooplankton dynamics were studied in Watan stream which flows into the Yellow Sea in Yeonggwang, Korea. Samples were collected at eight stations bimonthly during April 2006~February 2007. Mesozooplankton community was consisted of 45 taxa (8 cladocerans and 29 cope-pods). The abundance varied between the highest one ($31{\sim}127,587\;indiv.m^{-3}$) in October, and the lowest ($12{\sim}233\;indiv.m^-3$) in December. Diversity index showed to be the highest value in July (0.671) and the lowest one in August (0.368). A euryhaline species, Acartia hongi was dominant in brackish water stations (the highest abundance at $13.4^{\circ}C$ and 14.1 psu). In freshwater stations of the upstream, two cladoceran species of Polyphemus pediculus and Moina weismani occurred in high abundance in August. Dominant taxa of copepod were clustered to two or three groups mainly due to the difference of salinity gradients. Spatial distribution of mesozooplankton revealed to be determined by salinity gradients which were affected by opening and closing of the artificial dam in Watan stream.

Environmental Factor on the Succession of Phytoplankton Community in Jinju Bay, Korea (진주만 식물플랑크톤 군집의 천이에 영향을 미치는 환경요인)

  • Oh, Seok-Jin;Lee, Jong-Seok;Park, Jong-Sick;Noh, Il-Hyeon;Yoon, Yang-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.98-104
    • /
    • 2008
  • In April, July, October and December, 2003, we investigated the effects of water temperature, salinity and extinction coefficient on the distribution of phytoplankton communities at 22 stations in Jinju Bay of Korea. Water temperature and salinity showed a wide range of $10.4^{\circ}C-21.8^{\circ}C$ and 4.34-33.21 psu. Extinction coefficients showed a range of 0.09-3.08, above 1 from almost all the areas except in some central areas, especially, showed highest value (>2) in the estuary area. In phytoplankton, a total of 95 species belonging to 51 genera were identified. The predominant species were mainly diatoms throughout the year. Dominant species was Thalassionema nitzschioides, Skeletonema costatum, Thalassiosira sp. in April, S. costatum, Leptocylindrus danicus in July, C. debilis, S. costatum, C. curvisetus, Pseudonitzshia pungens in October, S. costatum, Asterionellopsis glacialis and C. debilis in December. S. costatum was a major dominant species for all the seasons. Considering the results of literature which is about physiological study, S. costatum seems to be euryhaline and eurythermal, and high affinity on the irradiance. Thus, the species might have been spread population in Jinju Bay where is characteristic of wide range of water temperature, salinity and high extinction coefficients.

  • PDF

Oceanographic Condition of the Coastal Area between Narodo Is. and Solido Is. in the Southern Sea of Korea and Its Relation to the Disappearance of Red-Tide Observed in Summer 1998 (한국 남해 나로도와 소리도 사이 해역의 1998년 하계 해황 및 적조소멸과의 관계)

  • Choi, Hyun-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.49-62
    • /
    • 2001
  • Hydrographic surveys were carried out seven times during May 31, 1998 and September 24, 1998 in order to study the physical environments of the coastal area between Narodo Is. and Sorido Is. in the southern sea of Korea (the South Sea) where the occurrence of Cochlodinium polykrikoides red tide is frequently observed in summer. Temperature and salinity of the water column from the surface to the depth of 30 m exhibit large seasonal variations. Mean temperature of the water column increased by 6 and mean salinity of the water column decreased by 2.71 psu during the observation period. Both the freshwater supplied from the adjacent land and the precipitation over the study area cannot account for the observed salinity variations. The influx of the low salinity water from the offshore area is considered to be the main cause for the observed salinity changes. Surface salinity in the study area shows different spatial distribution in the period of outbreaking, mid-stage and disappearance of the red tide. Especially, salinity was abruptly lowered at the stage of disappearance of red tide as compared to salinity of the previous observation period. Vertical structure of water properties also became vertically homogeneous at the disappearance stage, while it was highly stratified in the previous observation. Such changes can only be explained by the inflow of low salinity water from the offshore, which is considered as the most possible cause for the disappearance of the red tide in the study area. This study suggests that exchanges of water, and chemical and biological factors between coastal areas and of shore area in the South Sea need to be studied in association with the general circulation of the South Sea in order for the better understanding of the occurrence and disappearance of the red tide in the coastal area of the South Sea.

  • PDF

Phytoplankton and Environmental Factors in the Southeastern Barents Sea during August 2003 (북극해 하계 남동 바렌츠 해역에서 식물플랑크톤 크기별 분포와 환경요인에 관한 연구)

  • Joo, Hyoung-Min;Lee, Jin-Hwan;Chung, Kyung-Ho;Kang, Jae-Shin;Kang, Sung-Ho
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.265-276
    • /
    • 2005
  • In order to grasp the structure and dynamics of phytoplankton communities, chlorophyll-a (Chl-a) and cell abundance were measured at 20 stations during the period from August 9 to August 21, 2003 in the southeastern Barents Sea on surface and subsurface chlorophyll maximum depth (SCM). Surface temperatures were varied from minimum $-0.7^{\circ}C(st. 18)$ to maximum $10.4^{\circ}C(st.1)$. Salinities were varied from minimum 29.9 psu(st. 18) to maximum 35.8 psu(st.2). The maximum nutrient(phosphate, nitrate, silicate) concentrations were $0.12{\mu}M,\;0.11{\mu}M,\;7.53{\mu}M$ and minimum concentrations were $0.01{\mu}M,\;0.03{\mu}M,\;1.43{\mu}M$, respectively. On SCM physical environmental factor were almost similar. Chl-a concentrations ranged from 0.23 to $2.13{\mu}g\;chi-a\;l^{-1}$ at SCM. Nano- and pico phytoplankton were the important contributors for increase of the Chl-a. It was about seven times difference between highest concentration to lowest. Phytoplankton communities were composed of diatoms, dinoflagellates, cryptophyceae, silicoflagellate, and prymnesiophyceae showing 37 taxa at surface and 38 taxa at SCM. Picophytoplankton was the most dominant in all stations and all layers, but the second groups were 2 and/or 3 taxa. Phytoplankton abundance ranged from minimum $4.3{\times}10^5\;cells\;l^{-1}$ (st. 20) to maximum $2.4{\times}10^6\;cells\;l^{\-1}$. (st. 17) at surface water. As a result, phytoplankton might be controlled by physical factors such as North Atlantic ocean currents and northern melt water among environmental factors in Barents Set h addition the dominant species were nano- and pico phytoplankton such as Phaeocystis, Cryptomonas and Dinobryon in the study area.

Monitoring on the Marine Environment and Phytoplankton of Kongsfjorden, Svalbard, Arctic (북극 스발바드섬 Kongsfjorden의 해양 환경 및 식물플랑크톤 모니터링 연구)

  • Kang, Sung-Ho;Kim, Yea-Dong;Kang, Jae-Shin;Yoo, Kyu-Cheul;Yoon, Ho-Il;Lee, Won-Cheol
    • Ocean and Polar Research
    • /
    • v.25 no.2
    • /
    • pp.213-226
    • /
    • 2003
  • Kongsfjorden near Korean Arctic Station, Dasan, is a glacial fjord in the Svalbard archipelago, Arctic that is influenced by both Atlantic and Arctic water masses. During the Arctic field season August 2002, surface temperature, salinity, density, and phytoplankton biomass (chi a) was measured in Kongsfjorden. A total of 15 surface samples were collected for the phytoplankton related measurements. Chl a values ranged from 0.08 to 1.4mg chi a $m^{-3}$ (mean of 0.53mg chl a $m^{-3}$) in the overall surface stations. The highest values of the chi a concentrations (> 1.0mg chi a $m^{-3}$) were found near glacier in the northeastern part of Kongsfjorden. Nanoplanktonic (< $20{\mu}m$) phytoflagellates were important contributors for the increase of the chi a. The nano-sized phytoflagellates accounted for more than 90% of the total chi a biomass in the study area. Surface temperatures and salinities ranged from 2.5 to $7.18^{\circ}C$ (mean of $4.65^{\circ}C$) and from 22.55 to 32.97 psu (mean of 30.16 psu), respectively. The physical factors were not highly correlated with phytoplankton distribution. The character of surface water due to down-fjord wind was highly similar to phytoplankton distribution. Drifting ice, freshwater, and semdiment inputs from large tidal glaciers located in the inner part of Konsfjorden create steep physico- and biogeochemical environmental gradients along the length of this ford. The glacial inputs cause reduced biodiversity biomass and productivity in the pelagic community in the inner fjord. Primary production of benthic and pelagic microalgae is reduced due to the limited light levels in the turbid and mixed inner waters. The magnitude of glacial effects diminishes towards the outer fjord. Kongsfjorden is an important feeding ground fer marine mammals and seabirds. Especially, seabirds play the largest energy intake and also export nutrients for primary production of the marine microalgae. Kongsfjorden has received a lot of research attention as a site for exploring the impacts of climate changes. Dasan Station in Kongsfjorden will be an important Arctic site for monitoring and detecting future environmental changes.

The Effect of Environmental Factors on the Advent of Chattonella (Raphidophyceae) in Yeosu Coastal Waters, Korea, and the Effect of Nutrients on the Growth of Chattonella (여수 연안해역에서 침편모조류 Chattonella속 출현환경 및 영양염에 대한 성장특성)

  • Noh, Il-Hyeon;Oh, Seok-Jin;Shin, Hyeon-Ho;Kang, In-Seok;Yoon, Yang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.4
    • /
    • pp.362-372
    • /
    • 2010
  • In order to understand what leads to the appearance of harmful Chattonella algae in the Yeosu coastal waters of Korea, we measured environmental parameters every week at one station from May to November, 2006, and April to October, 2007. Four species of Chattonella appeared during the monitoring period: C. antiqua, C. globosa, C. marina and C. ovata. The range of water temperature and salinity were $15.0-27.9^{\circ}C$ and 17.6~33.0 psu, respectively, when Chattonella appeared, and their maximum cell density (4,840 cells/L) was at $27.1^{\circ}C$ and 33.0 psu. During the monitoring periods, the range of dissolved inorganic nitrogen (DIN), phosphate (DIP) and chlorophyll $\alpha$ (Chl-$\alpha$) concentrations in surface waters were $1.20-52.23\;{\mu}M$ ($8.59{\pm}8.97\;{\mu}M$), $0.03-1.56\;{\mu}M$ ($0.47{\pm}0.31\;{\mu}M$) and $0.45-31.12\;{\mu}g/L$ ($3.58{\pm}4.77\;{\mu}g/L$), respectively. Chattonella occurred at low cell density when the Chl-$\alpha$ concentration increased because of supplied nutrients, whereas their cell density increased during the periods of rapid decrease in Chl-$\alpha$. The results of growth experiments based on batch culture showed that the half saturation constant ($K_s$) of C. antiqua on ammonium (${NH_4}^-$), nitrate (${NO_3}^-$) and phosphate (${PO_4}^{2-}$) were $3.89{\mu}M$, $5.01\;{\mu}M$ and $0.63\;{\mu}M$, respectively. These Ks values are higher than those reported for diatoms and other flagellates at the DIP concentration (average $0.47{\mu}M$) of Yeosu coastal waters. Although the maximum specific growth rate (${\mu}_{max}$) of C. antiqua was lower than diatoms, it was higher than those of other flagellates. Therefore, our results indicate that the DIP level in the study area was too low to support Chattonella blooms, although Chattonella species have physiological characteristics that enable them to grow more rapidly than other flagellates when nutrient levels are higher than their $K_s$.