• 제목/요약/키워드: PSO (Particle Swarm Optimization)

검색결과 500건 처리시간 0.029초

태양광 발전 시스템의 전역 최대 발전전력 추종을 위한 인공지능 기반 기법 비교 연구 (Comparative Study of Artificial-Intelligence-based Methods to Track the Global Maximum Power Point of a Photovoltaic Generation System)

  • 이채은;장요한;정승훈;배성우
    • 전력전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.297-304
    • /
    • 2022
  • This study compares the performance of artificial intelligence (AI)-based maximum power point tracking (MPPT) methods under partial shading conditions in a photovoltaic generation system. Although many studies on AI-based MPPT have been conducted, few studies comparing the tracking performance of various AI-based global MPPT methods seem to exist in the literature. Therefore, this study compares four representative AI-based global MPPT methods including fuzzy logic control (FLC), particle swarm optimization (PSO), grey wolf optimization (GWO), and genetic algorithm (GA). Each method is theoretically analyzed in detail and compared through simulation studies with MATLAB/Simulink under the same conditions. Based on the results of performance comparison, PSO, GWO, and GA successfully tracked the global maximum power point. In particular, the tracking speed of GA was the fastest among the investigated methods under the given conditions.

GT-PSO- An Approach For Energy Efficient Routing in WSN

  • Priyanka, R;Reddy, K. Satyanarayan
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.17-26
    • /
    • 2022
  • Sensor Nodes play a major role to monitor and sense the variations in physical space in various real-time application scenarios. These nodes are powered by limited battery resources and replacing those resource is highly tedious task along with this it increases implementation cost. Thus, maintaining a good network lifespan is amongst the utmost important challenge in this field of WSN. Currently, energy efficient routing techniques are considered as promising solution to prolong the network lifespan where multi-hop communications are performed by identifying the most energy efficient path. However, the existing scheme suffer from performance related issues. To solve the issues of existing techniques, a novel hybrid technique by merging particle swarm optimization and game theory model is presented. The PSO helps to obtain the efficient number of cluster and Cluster Head selection whereas game theory aids in finding the best optimized path from source to destination by utilizing a path selection probability approach. This probability is obtained by using conditional probability to compute payoff for agents. When compared to current strategies, the experimental study demonstrates that the proposed GTPSO strategy outperforms them.

Research on Facility Layout of Prefabricated Building Construction Site

  • Yang, Zhehui;Lu, Ying;Zhang, Xing;Sun, Mingkang;Shi, Yufeng
    • 국제학술발표논문집
    • /
    • The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
    • /
    • pp.42-51
    • /
    • 2017
  • Due to the high degree of mechanization and the good environmental benefits, the prefabricated buildings are being promoted in China. The construction site layout of the prefabricated buildings has important influence on its safety benefit. However, few scholars have studied the safety problem on it. Firstly, in order to give a follow-up study foreshadowing the characteristics of prefabricated buildings are analyzed, the research assumptions are given and three types of safety buffers are established. And then a mult-objective model for the prefabricated buildings site layout is presented: taking into account the limits of noise, the coverage of the tower crane and the possibility of exceeding boundaries and overlapping, the constraints are and designed established respectively; Based on the improved System Layout Planning (SLP) method, the efficiency\cost\safety interaction matrices among the facilities are also founded for objective function. For the sake of convenience, a hypothetical facility layout case of the prefabricated building is used, the optimal solution of that is obtained in MATLAB with particle swarm algorithm (PSO), which proves the effectiveness of the model presented in this paper.

  • PDF

Bayesian MBLRP 모형을 이용한 시간강수량 모의 기법 개발 (A Development of Hourly Rainfall Simulation Technique Based on Bayesian MBLRP Model)

  • 김장경;권현한;김동균
    • 대한토목학회논문집
    • /
    • 제34권3호
    • /
    • pp.821-831
    • /
    • 2014
  • 추계학적 강수발생 및 모의기법은 수문학적 모형의 입력 자료로써 널리 이용되고 있다. 그러나 Modified Bartlett-Lewis Rectangular Pulse(MBLRP)와 같은 추계학적 포아송 클러스터 강수생성 모형에 대해서 국부최적화 방법을 통한 매개변수 추정 방법은 매개변수의 신뢰성에 상당한 영향을 주는 것으로 알려져 있다. 최근에는 MBLRP 모형의 국부해추정 문제를 해소하기 위하여 Particle Swarm Optimization (PSO) 또는 Shuffled Complex Evolution developed at The University of Arizona (SCE-UA) 등 매개변수 추정 성능이 우수한 전역최적화기법이 도입되고 있지만, 제한된 매개변수 공간에서 항상 신뢰성 있는 매개변수 추정이 가능한 것은 아니다. 뿐만 아니라, 모형의 매개변수들이 갖고 있는 불확실성에 관한 연구는 아직 충분히 논의되지 않았다. 이러한 관점에서 본 연구는 Bayesian 기법과 연계한 MBLRP 모형을 개발하였으며 각 매개변수들의 사후분포(Posterior Distribution)를 유도하여 매개변수가 내포하는 불확실성을 정량적으로 평가하였다. 그 결과 관측값에 대한 시간단위 이하 강수발생 통계치를 효과적으로 복원하고 있음을 확인할 수 있었다.

Dorsal Hand Vein Identification Based on Binary Particle Swarm Optimization

  • Benziane, Sarah Hachemi;Benyettou, Abdelkader
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.268-284
    • /
    • 2017
  • The dorsal hand vein biometric system developed has a main objective and specific targets; to get an electronic signature using a secure signature device. In this paper, we present our signature device with its different aims; respectively: The extraction of the dorsal veins from the images that were acquired through an infrared device. For each identification, we need the representation of the veins in the form of shape descriptors, which are invariant to translation, rotation and scaling; this extracted descriptor vector is the input of the matching step. The optimization decision system settings match the choice of threshold that allows accepting/rejecting a person, and selection of the most relevant descriptors, to minimize both FAR and FRR errors. The final decision for identification based descriptors selected by the PSO hybrid binary give a FAR =0% and FRR=0% as results.

방사형 기저 함수 기반 다항식 뉴럴네트워크 설계 및 최적화 (Design of RBF-based Polynomial Neural Network And Optimization)

  • 김기상;진용하;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1863_1864
    • /
    • 2009
  • 본 연구에서는 복잡한 비선형 모델링 방법인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 PNN(Polynomial Neural Network)을 접목한 새로운 형태의 Radial Basis Function Polynomial Neural Network(RPNN)를 제안한다. RBF 뉴럴 네트워크는 빠른 학습 시간, 일반화 그리고 단순화의 특징으로 비선형 시스템 모델링 등에 적용되고 있으며, PNN은 생성된 노드들 중에서 우수한 결과값을 가진 노드들을 선택함으로써 모델의 근사화 및 일반화에 탁월한 효과를 가진 비선형 모델링 방법이다. 제안된 RPNN모델의 기본적인 구조는 PNN의 형태를 이루고 있으며, 각각의 노드는 RBF 뉴럴 네트워크로 구성하였다. 사용된 RBF 뉴럴 네트워크에서의 커널 함수로는 FCM 클러스터링을 사용하였으며, 각 노드의 후반부는 다항식 구조로 표현하였다. 또한 입력개수, 입력변수, 클러스터의 개수를 PSO알고리즘(Particle Swarm Optimization)을 사용하여 최적화 시켰다. 제안한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 데이터를 이용하여 그 우수성을 보인다.

  • PDF

Power Quality Optimal Control of Railway Static Power Conditioners Based on Electric Railway Power Supply Systems

  • Jiang, Youhua;Wang, Wenji;Jiang, Xiangwei;Zhao, Le;Cao, Yilong
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1315-1325
    • /
    • 2019
  • Aiming at the negative sequence and harmonic problems in the operation of railway static power conditioners, an optimization compensation strategy for negative sequence and harmonics is studied in this paper. First, the hybrid RPC topology and compensation principle are analyzed to obtain different compensation zone states and current capacities. Second, in order to optimize the RPC capacity configuration, the minimum RPC compensation capacity is calculated according to constraint conditions, and the optimal compensation coefficient and compensation angle are obtained. In addition, the voltage unbalance ${\varepsilon}_U$ and power factor requirements are satisfied. A PSO (Particle Swarm Optimization) algorithm is used to calculate the three indexes for minimum compensating energy. The proposed method can precisely calculate the optimal compensation capacity in real time. Finally, MATLAB simulations and an experimental platform verify the effectiveness and economics of the proposed algorithm.

Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm

  • Temur, Rasim
    • Geomechanics and Engineering
    • /
    • 제24권3호
    • /
    • pp.237-251
    • /
    • 2021
  • The main purpose of this study is to investigate the performance of the proposed hybrid teaching-learning based optimization algorithm on the optimum design of reinforced concrete (RC) cantilever retaining walls. For this purpose, three different design examples are optimized with 100 independent runs considering continuous and discrete variables. In order to determine the algorithm performance, the optimization results were compared with the outcomes of the nine powerful meta-heuristic algorithms applied to this problem, previously: the big bang-big crunch (BB-BC), the biogeography based optimization (BBO), the flower pollination (FPA), the grey wolf optimization (GWO), the harmony search (HS), the particle swarm optimization (PSO), the teaching-learning based optimization (TLBO), the jaya (JA), and Rao-3 algorithms. Moreover, Rao-1 and Rao-2 algorithms are applied to this design problem for the first time. The objective function is defined as minimizing the total material and labor costs including concrete, steel, and formwork per unit length of the cantilever retaining walls subjected to the requirements of the American Concrete Institute (ACI 318-05). Furthermore, the effects of peak ground acceleration value on minimum total cost is investigated using various stem height, surcharge loads, and backfill slope angle. Finally, the most robust results were obtained by HTLBO with 50 populations. Consequently the optimization results show that, depending on the increase in PGA value, the optimum cost of RC cantilever retaining walls increases smoothly with the stem height but increases rapidly with the surcharge loads and backfill slope angle.

Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO

  • Benemaran, Reza Sarkhani;Esmaeili-Falak, Mahzad
    • Computers and Concrete
    • /
    • 제26권4호
    • /
    • pp.309-316
    • /
    • 2020
  • The application of multi-variable adaptive regression spline (MARS) in predicting he long-term compressive strength of a concrete with various admixtures has been investigated in this study. The compressive strength of concrete specimens, which were made based on 24 different mix designs using various mineral and chemical admixtures in different curing ages have been obtained. First, The values of fly ash (FA), micro-silica (MS), water-reducing admixture (WRA), coarse and fine aggregates, cement, water, age of samples and compressive strength were defined as inputs to the model, and MARS analysis was used to model the compressive strength of concrete and to evaluate the most important parameters affecting the estimation of compressive strength of the concrete. Next, the proposed equation by the MARS method using particle swarm optimization (PSO) algorithm has been optimized to have more efficient equation from the economical point of view. The proposed model in this study predicted the compressive strength of the concrete with various admixtures with a correlation coefficient of R=0.958 rather than the measured compressive strengths within the laboratory. The final model reduced the production cost and provided compressive strength by reducing the WRA and increasing the FA and curing days, simultaneously. It was also found that due to the use of the liquid membrane-forming compounds (LMFC) for its lower cost than water spraying method (SWM) and also for the longer operating time of the LMFC having positive mechanical effects on the final concrete, the final product had lower cost and better mechanical properties.

포복경 영양 번식 최적화 알고리즘 기반 태양전지 최대 전력 점 추적에 관한 연구 (A Study on Vegetative Propagation by Runner Optimization Algorithm-based Maximum Power Point Tracking for Photovoltaic)

  • 정진우;정경권;이태원;박성일;손영옥
    • 한국전자통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.493-502
    • /
    • 2021
  • 외부 환경변화에 적응하여 MPP를 추적할 수 있는 포복경 영양 번식(VPR; Vegetative Propagation by Runner) 최적화 알고리즘 기반 MPPT 알고리즘을 제시하였다. VPR 알고리즘은 영양기관을 기반으로 군집 이동 번식하는 식물 생태를 모방한 알고리즘으로 식물의 노화 및 부근(Rhizome)에 대한 주변탐색 절차를 수행하여 최적점 인근의 주변을 지속적으로 탐색할 수 있다. 따라서 VPR 기반 MPPT 알고리즘의 경우, MPPT 알고리즘이 수행되는 시점에 발생하는 외부 환경변화에 적응하여 최적점을 탐색할 수 있다. 본 논문에서는 다수의 모의실험을 통해 VPR 기반 MPPT 알고리즘의 성능을 분석하였다. 더불어 PSO(Particle Swarm Optimization) 기반 MPPT 알고리즘과 동일한 환경에서 성능 비교를 통해 성능의 우수성을 비교하였다.