• Title/Summary/Keyword: PSIM simulation

Search Result 328, Processing Time 0.029 seconds

Characteristic Analysis of Three Phase PWM Boost AC-AC Converter Using Circuit DQ Transformation (회로 DQ 변환을 이용한 3상 PWM Boost AC-AC 컨버터의 특성해석)

  • 최남섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1514-1519
    • /
    • 2003
  • This paper presents modeling and analysis of static and dynamic characteristics in three phase PWM Boost AC-AC converter used for input voltage sag compensation of custom power. Especially, using circuit DQ transformation technique, an equivalent circuit in fundamental frequency domain is obtained which has all the system characteristics. Moreover, voltage gain and input power factor is analytically induced and linearized state equation at the specific operating point is given. Finally, PSIM simulation results show the validity of the Nosed modelling and analyses.

Dynamic Characteristics Analysis of PWM Cuk AC-AC Converter for Power Quality Improvement of Custom Power (Custom Power의 전력품질 향상을 위한 PWM Cuk AC-AC 컨버터의 동적 특성 해석)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.517-520
    • /
    • 2004
  • In this paper, a PWM Cuk AC-AC converter is modelled by using complex circuit DQ transformation whereby the equivalent model is obtained which has the complete information of the Cuk converter. Using the model, the dynamicc characteristics equations such as state equations is analytically obtained. Finally, the PSIM simulation show the validity of the modelling and analysis.

  • PDF

Static Characteristics Analysis of PWM Cuk AC-AC Converter for Power Quality Improvement of Custom Power (Custom Power의 전력품질 향상을 위한 PWM Cuk AC-AC 컨버터의 정적 특성 해석)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.513-516
    • /
    • 2004
  • In this paper, a PWM Cuk AC-AC converter for power quality improvement of custom power is presented. The PWM Cuk AC-AC converter that is used in VVCF applications such as AC line conditioner, phase shifter is modelled by using complex circuit DQ transformation whereby the static characteristics equations such as voltage gain and power factor is analytically obtained. Finally, the PSIM simulation show the validity of the modelling and analysis.

  • PDF

A Study on DC Traction Power Supply System Using PWM Converter (PWM컨버터를 적용한 경전철 전력공급시스템에 관한 연구)

  • Kim, Joorak;Park, Chang-Reung;Park, Kijun;Kim, Joo-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.250-254
    • /
    • 2016
  • Currently, power conversion system which converts AC to DC Power is applied in domestic urban railway. The diode rectifier is used in most of them. However the diode rectifier can not control the output voltage and can not regenerate power as well. On the other hand, PWM (pulse width modulation) converter using IGBT (isolated gate bipolar transistor) can control output voltage, allowing it to reduce the output voltage drop. Moreover the Bi-directional conduction regenerates power which does not require additional device for power regeneration control. This paper compared the simulation results for the DC power supply system on both the diode rectifier and the PWM converter. Under the same load condition, simulation circuit for each power supply system was constructed with the PSIM (performance simulation and modeling tool) software. The load condition was set according to the resistance value of the currently operating impedance of light rail line, and the line impedance was set according to the distance of each substations. The train was set using a passive resistor. PI (proportional integral) controller was applied to regulate the output voltage. PSIM simulation was conducted to verify that the PWM Converter was more efficient than the diode rectifier in DC Traction power supply system.

Advanced Interchangeable Dynamic Simulation Model for the Optimal Design of a Fuel Cell Power Conditioning System

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Shim, Jae-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.561-570
    • /
    • 2010
  • This paper presents an advanced dynamic simulation model of a proton exchange membrane fuel cell for the optimal design of a fuel cell power conditioning system (FC-PCS). For the development of fuel cell models, the dynamic characteristics of the fuel cell are considered, including its static characteristics. Then, software fuel cell simulation is realized using Matlab-Simulink. Specifically, the design consideration of PCS (i.e., power semiconductor switch, capacitor, and inductor) is discussed by comparatively analyzing the developed simulator and ideal DC source. In addition, a cosimulation between the fuel cell model and PCS realized using the PSIM software is performed with the help of the SimCoupler module. Detailed analysis and informative simulation results are provided for the optimal design of fuel cell PCS.

Development of Hardware In-the-Loop Simulation System for Testing Power Management of DC Microgrids Based on Decentralized Control (분산제어 기반 직류 마이크로그리드 전력관리시스템의 HIL 시뮬레이션 적용 연구)

  • To, Dinh-Du;Le, Duc-Dung;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.191-200
    • /
    • 2019
  • This study proposes a hardware-in-the-loop simulation (HILS) system based on National Instruments' PXI platform to test power management and operation strategies for DC microgrids (MGs). The HILS system is developed based on the controller HIL prototype, which involves testing the controller board in hardware with a real-time simulation model of the plant in a real-time digital simulator. The system provides an economical and effective testing function for research on MG systems. The decentralized power management strategy based on the DC bus signaling method for DC MGs has been developed and implemented on the HILS platform. HILS results are determined to be similar to those of the off-line simulation in PSIM software.

Development of Improved P&O Algorithm of PV System Considering Insolation variation (일사량 변화를 고려한 PV 시스템의 개선된 P&O 알고리즘 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.166-176
    • /
    • 2010
  • The output characteristics of photovoltaic(PV) arrays are nonlinear and are affected by the temperature and solar insolation of cells. Maximum power point tracking(MPPT) methods are used to maximize PV array output power by tracking maximum power point(MPP) continuously. To increase the output efficiency of PV system, it is important to have more efficient MPPT. This paper proposes a novel maximum power point tracking(MPPT) control algorithm considering insolation to improve efficiency of PV system. The proposed algorithm is composed perturb and observe(P&O) method and constant voltage(CV) method. The proposed method is simulated under varying operating conditions. The effectiveness of these different MPPT methods is investigated thoroughly by PSIM simulation. The simulation results show that this proposed method provides better performance than conventional methods at a variable insolation without self-excited vibration of the power. By the simulation results, the validity of the proposed HB method is proved.

The Simulation of Single Phase Multi-Level Converter which can control the SOC of Lithium-Ion Battery Units (리튬이온 배터리의 SOC 제어가 가능한 단상 멀티레벨 컨버터 시뮬레이션)

  • Kim, Jae-Hong;Kim, Eel-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.122-128
    • /
    • 2011
  • This paper proposes a new control scheme of lithium ion battery units based on single phase multi-level converter. In the DC/AC converter applications using battery storage system, it is necessary to control the balancing voltage of individual battery units for high efficiency utilization. Using the proposed control scheme, the DC/AC single phase converter system is applied. To verify the effectiveness of the proposed control scheme, computer simulation is accomplished. In the computer simulation, lithium-ion battery units and single phase multi-level converter system are modeled and carried out using Psim simulation program. It will be helpful for design and applications of energy storage system with lithium-ion battery.

Improved DC-DC Bidirectional Converter (개선된 DC-DC 양방향 컨버터)

  • Kim, Seong-Hwan;Hur, Jae-Jung;Jeong, Bum-Dong;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.76-82
    • /
    • 2017
  • Since the introduction of electronically controlled engines and electric propulsion ships, the need for an uninterruptible power supply for emergency power supply devices that use batteries has gained importance. The bidirectional converter in such emergency power supply devices is a crucial component. This paper proposes, a topology for an improved DC-DC bidirectional converter that is characterized by a high voltage conversion ratio and low voltage stress of switches. To confirm the performance of the converter, a computer simulation was executed with PSIM software. The conversion ratio of the proposed converter was found to be four times higher than the conventional boost converter in step-up mode and one-fourth that of the conventional buck converter in step-down mode, and the voltage stress of the switches was one-fourth of the high-side voltage. Moreover, the proposed converter was confirmed to be able to distribute equal currents between two interleaved modules without using any extra current-sharing control method because of the charge balance of its blocking capacitors.

Reduction of Conducted Emission in Interleaved RPWM Buck Converter (인터리브드 RPWM Buck 컨버터의 전도성 노이즈 감소에 대한 연구)

  • Lee, Seunghyun;Lee, Keunbong;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.298-308
    • /
    • 2017
  • This paper presents a Interleaved Buck Converter(IBC) system with Random PWM to reduce electromagnetic noise by harmonics. Swithced mode power supply generally controlled by high switching frequency have a electromagnetic interference(EMI) issue due to the high-voltage/high-current switching to regulate the voltage in buck converter. To solve the problem. we present a novel IBC system with PRBS. IBC system has two active switches with 180 phase difference that controll the cicuit with two PWM signal. IBC system may be disadventageous for the cost due to the addtion of one set of switch, but it has adventages of power distribution, current ripple cancellation, fast transient response, and passive component size reduction. To verify the validity of study, simulation program has been bulit using PSIM and the experimental results of IBC system using RPWM was compared with the conventinal PWM and randomized PWM.