• Title/Summary/Keyword: PSC beam

Search Result 133, Processing Time 0.029 seconds

Nonlinear FEM analysis of Cable-stayed PSC Bridges Considering Time-dependent Behavior (시간 의존적 거동을 고려한 PSC 사장교의 비선형 유한요소해석)

  • Cho, Hwak-Shin;Seong, Dae-Jeong;Im, Duk-Ki;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.177-184
    • /
    • 2011
  • In this paper the nonlinear analysis that include time-dependent characteristics of materials and geometric nonlinearity of elements for the cable-stayed PSC bridges is presented. Analysis models for finite element method were developed based on the flexibility based fiber beam-column model originally proposed by Spacone et al.(1996). The developed analysis model implemented in general purpose object-oriented finite element analysis program named HFC(Cho 2009). The performance of proposed analysis models is evaluated by comparing with the former results of the design data. The deflection of time dependent analysis is larger than time ignored analysis on construction sequences, and the bridge is destructed at a smaller deflection than the time ignored analysis on failure behavior.

Flexural Strength Evaluation of PSC Beam with Loss of PS Tendon Area (PS강재의 단면적 감소에 따른 PSC보의 휨강도 평가)

  • Park, Soon-Hyung;Kim, Yong-Tae;Youn, Seok-Goo;Kim, Eun-Kyum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.309-312
    • /
    • 2008
  • This paper describes ultimate load tests which were performed to show the effects of prestress loss and tendon corrosion on the flexural strength of post-tensioned concrete beams and the occurrence of wire fracture. Five test specimens were fabricated in laboratory with the variations of the prestress of tendons and the loss of tendon area. For two specimens, small area of tendon at the center of the beam was exposed by using diameter 25mm drill and the exposed tendon was corroded using accelerated corrosion equipment. During the tests, deflections, crack width, and strain changes were measured and acoustic events were monitored with two acoustic sensors. Tests results show that the ultimate flexural strength of test specimens with corroded tendons is smaller than the predicted flexural strength which is calculated considering the loss of tendon area. It is considered that estimation of flexural strength of PSC beams with corroded tendons is very complicated just based on the loss of tendon area obtained by one-side visual inspection.

  • PDF

Nonlinear Flexural Analysis of PSC Test Beams in CANDU Nuclear Power Plants

  • Bae, In-Hwan;Choi, In-Kil;Seo, Jeong-Moon
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.180-190
    • /
    • 2000
  • In this study, nonlinear analyses of prestressed concrete(PSC) test beams for inservice inspection of prestressed concrete containments for CANDU nuclear power plants are presented. In the analysis the material nonlinearities of concrete, rebar and prestressing steel are used. To reduce the numerical instability with respect to the used finite element mesh size, the tension stiffening effect has been considered. For concrete, the tensile stress-strain relationship derived from tests is modified and the stress-strain curve of rebar is assumed as a simple bilinear model. The stress-strain curve of prestressing steel is applied as a multilineal curve with the first straight line up to 0.8fpu. To prove the validity of the applied material models, the behavior and strength of the PSC test specimens tested to failure have been evaluated. A reasonable agreement between the experimental results and the predictions is obtained. Parametric studies on the tension stiffening effects, the impact of prestressing losses with time, and the compressive strength of concrete have been conducted.

  • PDF

Shear Behavior of Post-tensioning PSC Beams with High Strength Shear Reinforcement (고강도 전단보강철근을 사용한 포스트텐션 프리스트레스트 콘크리트 보의 전단거동 평가)

  • Jun, Byung-Koo;Lee, Jea-Man;Lim, Hye-Sun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • The KCI-12 and ACI 318-14 design codes limit the maximum yield strength of shear reinforcement to prevent concrete compressive crushing before the yielding of shear reinforcement. The maximum yield strength of shear reinforcement is limited to 420 MPa in the ACI 318-14 design code, while limited to 500 MPa in the KCI-12 design code. A total of eight post-tensioning prestressed concrete beams with high strength shear reinforcement were tested to observe the shear behavior of PSC beams and the applicability of the high strength reinforcement was thus assessed. In the all PSC beam specimens that used stirrups greater than maximum yield strength of shear reinforcement required by the ACI 318-14 design code, the shear reinforcement reached their yield strains. The observed shear strength of tested eight PSC beams was greater than the calculated ones by the KCI-12 design codes. In addition, the diagonal crack width of all specimens at the service load was smaller than the crack width required by the ACI 224 committee. The experimental and analytical results indicate that the limitation on the yield strength of shear reinforcement in the ACI 318-14 design code is somewhat under-estimated and needs to be increased for high strength concrete. Also the application of high strength materials to PSC is available with respect to strength and serviceability.

Development of Analysis Program for PSC Beams with Unbonded External Tendons (외부 비부착 강선을 갖는 PSC보의 해석프로그램 개발)

  • Kwak, Hyo-Gyoung;Son, Je-Kuk;Kim, Sun-Yong;Park, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.247-260
    • /
    • 2006
  • In this paper, an analytical method which can describe the structural behavior of prestressed concrete (PSC) bridges reinforced with the unbonded external tendon is developed. Since the unbonded external tendon is directly installed to the deviators while maintaining a straight configuration, it has a different deformation field from that of concrete and accompanies the secondary effect caused by the change of the primary eccentricity between concrete and external tendon. In advance, the friction slip at the deviators is also taken into consideration on the basis of the force equilibrium between the friction force and the driving force. Through correlation studies between experimental data and analytical results, it is verified that the proposed numerical model can effectively predict the structural behavior of PSC beam bridges with comparative precision.

The Experimental Study of Full-scale Optimized Composite Beam (OCB) Reinforced with Open Strands (노출강연선으로 보강된 하이브리드 건축용 OCB보의 실물모형 재하실험연구)

  • Lee, Doo-Sung;Kim, Tae-Kyun;Chae, Gyu-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.471-480
    • /
    • 2015
  • The building structure is planned to maximize the use of space in recent. It was developed of a hybrid OCB (Optimized Composite Beam) for trying to take advantage of the maximize space. The OCB is composed of the steel h-beam section reinforced by open strands in negative moment zone and the psc concrete section in positive zone. Flexural behaviors of typical architectural bybrid OCB section was investigated. The 15 m OCB specimen was tested under three point static loading system. Following results are obtained from the tests; 1) The OCB with 15 m span develop initial flexural crackings under the 171% of full service loading. 2) Overall deflections of OCB under the service loads are less than those of the allowable limit in KCI Code provision. 3) The crack patterns, failure mode and ultimate load capacity of test specimen and F.E. model in this paper and they are compared to each other. The OCB is verified of structural reliability from the experimental results.

Fatigue Durability of Cramp Joint at Precast Highway Deck Slabs (프리캐스트 바닥판용 클램프 조인트의 피로내구성)

  • Kim, Yoon Chil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • The fatigue durability test using the actual size beam was performed with a cramp joint in order to apply to the highway bridge deck slab. Three types of beam were investigated for durability performance by considering stress conditions in real bridge deck slabs, 1) A beam with major shear force applied at the joint (RC Type) 2) A beam with major bending moments applied at the joint (PSC Type) 3) A beam with the pure shear applied at the joint. The experiment for beams with cramp joints showed that the cramp joint had enough durability for fatigue regardless of the overlaid length of the looped distribution bars under the current design strength level. Moreover, it was clarified that the enough durability for fatigue under the load repetition was achieved by increasing the joint span grater than 1.5D with the consideration of the deformation due to reduction in joint stiffness.

Detection of Fracture Signals of Low Prestressed Steel Wires in a 10 m PSC Beam by Continuous Acoustic Monitoring Techniques (연속음향감지기법을 이용한 긴장력이 감소된 10 m PSC보의 PS 강선 파단음파 감지)

  • Youn, Seok-Goo;Lee, Chang-No
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.113-122
    • /
    • 2010
  • Corrosion of prestressing tendons and wire fractures in grouted post-tensioned prestressed concrete bridges have been considered as a serious safety problem. In bridge evaluation the condition of prestressing tendons should be inspected, and if corroded tendons are found, the loss of tendon area should be included when we calculate the ultimate strength. In the previous study, it was evaluated that continuous acoustic monitoring techniques could be considered as a reliable non-destructive method for detecting wire fractures of fully grouted post-tensioned prestressing tendons. In the present study, an experimental test was performed for detecting wire fractures of post-tensioned prestressing tendons which are prestressed lower than current design level. A 10 m prestressed concrete beam was fabricated, which included two tendons prestressed 66 percentage and 40 percentage of tensile strength, respectively. The corrosion of two tendons was induced by an accelerated corrosion equipment and the test beam was monitored by using seven acoustic sensors and a continuous acoustic monitoring system. From each prestressing tendon, two acoustic signals of wire fractures were successfully detected and source locations were estimated within 20 mm error. Based on the test results, it is considered that continuous acoustic monitoring techniques can be applied to detect low-prestressed wire fracture in fully grouted post-tensioned prestressed concrete beams.

Evaluation on Static Behavior of Long Span Prestressed Concrete Deck (장지간 프리스트레스트 콘크리트 바닥판의 정적 거동 평가)

  • Joo, Sanghoon;Chung, Chulhun;Lee, Hanjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.969-977
    • /
    • 2016
  • In this paper, the static load test of long span PSC deck used in the twin steel plate girder bridge was conducted. To evaluate the structural behavior of long span deck, longitudinally sufficient length of deck is needed, but it is difficult to test the full-scale long span deck due to limit of transportation, setting and laboratory space. Therefore, this study proposed a method to apply longitudinal stiffness of the full-scale deck to the test specimen of longitudinally short length, and it was reinforced with the steel beam. The failure behavior and structural performance of the long span deck were evaluated by the proposed test specimen deck.

Application of Artificial Neural Network Model for Environmental Load Estimation of Pre-Stressed Concrete Beam Bridge (PSC Beam교 환경부하량 추정을 위한 인공신경망 모델 적용 연구)

  • Kim, Eu Wang;Yun, Won Gun;Kim, Kyong Ju
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.4
    • /
    • pp.82-92
    • /
    • 2018
  • Considering that earlier stage of construction project has a great influence on the possibility of lowering of environmental load, it is important to build and utilize system that can support effective decision making at the initial stage of the project. In this study, we constructed an environmental load estimation model that can be used at the early stage of the project using basic design factors. The model was constructed by using the artificial neural network to estimate environmental load by applying to planning stage (ANN-1), basic design stage (ANN-2). The result of test, shows that average of absolute measuring efficiency and standard deviation of ANN-1 and ANN-2 were 11.19% / 5.30% and 9.59% / 3.09% each. This result indicates that the model using the input variables extended with the project progress has high reliability and it is considered to be effective in decision support at the initial design stage of the project.