Nonlinear FEM analysis of Cable-stayed PSC Bridges Considering Time-dependent Behavior

시간 의존적 거동을 고려한 PSC 사장교의 비선형 유한요소해석

  • 조확신 (성균관대학교 초고층장대교량학과) ;
  • 성대정 (성균관대학교 건설환경시스템공학과) ;
  • 임덕기 (삼성물산(주) 건설부문) ;
  • 신현목 (성균관대학교 건설환경시스템공학과)
  • Received : 2010.09.29
  • Accepted : 2010.12.09
  • Published : 2011.04.30

Abstract

In this paper the nonlinear analysis that include time-dependent characteristics of materials and geometric nonlinearity of elements for the cable-stayed PSC bridges is presented. Analysis models for finite element method were developed based on the flexibility based fiber beam-column model originally proposed by Spacone et al.(1996). The developed analysis model implemented in general purpose object-oriented finite element analysis program named HFC(Cho 2009). The performance of proposed analysis models is evaluated by comparing with the former results of the design data. The deflection of time dependent analysis is larger than time ignored analysis on construction sequences, and the bridge is destructed at a smaller deflection than the time ignored analysis on failure behavior.

본 논문에서는 PSC 사장교의 시간 의존적 효과가 시공단계 및 극한 거동에 미치는 영향을 파악하기 위하여 재료 비선형, 시공단계별 시간 의존적 해석 및 변화하는 구조시스템에서의 기하 비선형해석 등을 포함한 비선형해석 방법을 제시하였다. 이를 위해 Spacone(1998)이 제안한 유연도법에 근거한 파이버 보-기둥요소를 사용하였으며, 건설기술연구원에서 새롭게 개발한 범용 유한요소해석 프로그램 HFC에 사용자 정의된 요소를 추가하여 사용하였다. 검증대상 교량에 대한 시간 의존적 효과를 고려하여 해석한 결과 시공단계에서의 처짐은 시간 의존적 효과를 고려하지 않은 경우보다 매우 크게 나타났으며, 극한거동에서는 시간 의존적 효과를 고려한 경우 더 작은 처짐에서 교량이 파괴되는 것으로 나타났다.

Keywords

References

  1. Kim, T.H., Lee, K.M., Yoon, C.Y., Shin, H.M. (2003) Inelastic Behavior and Ductility Capacity of Reinforced Concrete Bridge Piers Under Earthquake. 1: Theory and Formulation, Journal of Structural Eng., 129(9), pp.1199-1207. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:9(1199)
  2. Magura, D.D., Sozen, M.A., Siess, C.P. (1964) A Study of Stress Relaxation in Prestressing Reinforcement, PCI Journal, 9(2), pp.13-57. https://doi.org/10.15554/pcij.04011964.13.57
  3. Mander, J.B., Priestley, M.J.N., Park, R. (1988) Theoretical Stress-Strain Model for Confined Concrete, Journal of Structural Eng., 114(8), pp.1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  4. Neuenhfer, A., Filippou, F.C. (1998) Geometrically Nonlinear Flexibility-Based Frame Finite Element. Journal of Structural Eng., 124(6), pp.704-711. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(704)
  5. Okamura, H., Maekawa, K., Izumo, J. (1987) RC Plate Element Subjected to Cyclic Loading, Int. Association for Bridge and Structural Eng. Colloquium, 54, pp.575-590.
  6. Seong, D.J. (2010) Curved-Tendon and Fiber Beam-Column Element for Analysis of Cable-Stayed Bridge, The International Association for Bridge Maintenance and Safety.
  7. Shima, H., Tamai, S. (1987) Tension Stiffness Model under Reversed Loading Including Post Yield Range. Int. Association for Bridge and Structural Eng. Colloquium, 54, pp.547-556.
  8. Shin, H.M. (1988) Finite Element Analysis of Reinforced Concrete Members Subjected to Reversed Cyclic In-Plane Loadings. Ph. D. Thesis, Univ. of Tokyo, Japan.
  9. Spacone, E., Filippou, F.C., Taucer F.F. (1996) Fiber Beam-Column Model for Non-Linear Analysis of R/C Frames : Part 1. Formulation, Earthquake Engineering and Structural Dynamics, 25, pp.771-725.