• Title/Summary/Keyword: PSC I형 교량

Search Result 26, Processing Time 0.035 seconds

Evaluation of the Load Carrying Capacity of Existing Bridges with Long Span Hollow Web Prestressed Concrete Girder by Static Load Test (정적재하시험을 통한 장경간 중공 웨브 PSC 거더교의 내하력 평가)

  • Kim, Seong-Kyum;Jang, Pan-Ki;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.97-102
    • /
    • 2018
  • Conventional PSC I type girders were adversely affected by the self - weight of concrete, anchorage, prestressing. In order to overcome this problem, PSC girder was constructed with a hollow in the web and developed a hollow web PSC type I girder which is applicable to 50 - 70m span by multistage stressing and then actually long span hollow web PSC girder bridge was constructed. In this study, the results of Static Load Test and the Finite Element Analysis of the hollow web PSC I girder bridges were compared and analyzed, and the Load Carrying Capacity and safety of PSC girder bridges were evaluated. The Static Load Test and the numerical analysis results of this bridge showed similar tendency and the behavior of the hollow web PSC I girder was well simulated. The entire girders of the bridges had sufficient Load Carrying Capacity under the live load design condition and the bridges satisfied the safety and confirmed the appropriateness of the construction.

Analysis of Structural Safety for Rebar Exposure and Corrosion in PSC I-Girder Bridge Slab (PSC I형 교량 바닥판의 철근노출 및 부식에 대한 구조적 안전성 분석)

  • Han, Manseok;Park, Ju-Hyun;Lee, Jong-Han;Min, Jiyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.67-74
    • /
    • 2021
  • This paper evaluated the structural safety of an aging PSC I-girder bridge with rebar corrosion in the deck. The geometry and rebar of the bridge were designed based on an actual PSC I-girder bridge, and the numerical analysis was performed considering the crack of concrete and yielding of steel rebar. According to the evaluation criteria of Korea Infrastructure Safety and Technology Corporation, this study defined two criteria of rebar exposure and corrosion rates to construct a total of 32 corrosion scenarios. Rebar exposure was defined as the exposure of tensile rebars in the bridge deck due to the removal of cover concrete. The results of the analysis showed that the safety and rating factors of the bridge decreased with increasing rebar exposure and corrosion rates. For the rebar corrosion rate more than 50%, the safety grade of the bridge should be carefully evaluated for all the rebar exposure rate. When the rebar corrosion rate exceeds 57%, the bridge was evaluated as E grade regardless of rebar exposure rate. A correlation analysis for a 2% of rebar exposure rate found that the bridge was evaluated as A grade up to 55.8% corrosion rate, C grade up to 56.9%, D grade up to 58.5%, and E grade for corrosion rate greater than 58.5%. This study indicates the necessity of a quantitative evaluation of rebar corrosion for evaluating the structural safety of aging bridges.

Seismic Behavior and Economic efficiency Analysis of Bridge for PSC I-Shaped Girder of isolated device (지진격리장치를 갖는 PSC I형 거더교량의 지진거동 특성 및 경제성 분석)

  • Shin, Yung-Seok;Park, Jang-Ho;Choi, Kwang-Soo;Hong, Soon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.145-151
    • /
    • 2008
  • The research so far has primarily analyzed efficiency improvement but in this research, it analyzes the characteristics of earthquake behavior, with changed pier heights, through ordinary and seismic analysis. For this, the kind of bridge bearing has been changed against PSC I-shaped bridge, which is mostly used in practice, and at all times earthquake analysis has been performed with through height of pier. Especially considering sectional power resulting from earthquake analysis, displacement of PSC I-shaped bridge bearing, diameter of pier pillar by earthquake load, and upper spare gap have been analyzed. In case of high-pear, seismic isolated device is decided as proper for cars' driving and for management of bridge since it decreases movement of upper structure, than elastic bearing, reducing size of elastic connect device, and it's been analyzed it is effective for improvement of fine view and economic efficiency reducing section of lower bridge structure. Finally, when design PSC I-shaped bridge bearing, for the proper structure and high-pier side, applying seismic isolated device through precise inner analysis is proper than applying equal elastic bearing.

Study on the Evaluation Method of Load Carrying Capacity Based on Nonlinear FEM Analysis for PSC I Typed Girder Bridge (비선형 FEM 해석에 기초한 PSC I 거더교량의 내하력 평가기법에 관한 연구)

  • Sim, Jongsung;Kim, Gyu-Seon;Moon, Do-Young;Ju, Minkwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.81-88
    • /
    • 2008
  • The purpose of this study is to improve and modify the evaluation method of load carrying capacity for simply supported PSC I Typed girder bridge. To do this, conventional ASD(Allowable Stress Design) and USD(Ultimate Strength Design) evaluation method were initially investigated and it was evaluated that the conventional USD evaluation method may perform the load carrying capacity as conservative because it do not consider the prestressing upper-force effect of simply supported PSC I Typed girder bridge. To reasonably evaluate the load carrying capacity, the upper-force effect should be considered to the PSC I Typed girder bridge. Thus, in this study, the MUSD method was Suggested and compared to the nonlinear FEM based-load carrying capacity using the live load factor and the efficiency of the evaluation method of load carrying capacity was investigated by experimental and analytical result. In the result of this study, the suggested MUSD evaluation method showed a reasonable evaluating result for the simply supported PSC bridge. For the new technique of load carrying capacity based on the nonlinear FEM analysis, it could effectively simulate the load-deflection relationship and the load carrying capacity of the PSC I Typed girder bridge.

Dynamic Response of PSC I shape girder being used wide upper flange in Railway Bridge (확장된 상부플랜지 PSC I형 거더교의 동특성 및 동적안정성 분석)

  • Park, Jong-Kwon;Jang, Pan-Ki;Cha, Tae-Gweon;Kim, Chan-Woo;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.125-135
    • /
    • 2015
  • The tendency of more longer span length being required economical in railway bridges is studying about PSC I shaped girder. In this case, it is important to analyze and choose the effective girder section for stiffness of bridge. This study investigates the dynamic properties and safety of PSC I shaped girder being used wide upper flange whose selection based on radii and efficiency factor of flexure for railway bridge in different span type. In addition, 40m PSC Box girder bridge adopted in Honam high speed railway is further analyzed to compare dynamic performance of PSC I shaped girder railway bridge with same span length. Time history response is acquired based on the mode superposition method. Static analysis is also analyzed using standard train load combined with the impact factor. Consequently, the result met limit values in every case including vertical displacement, acceleration and distort.

Economics analysis for life cycle cost design of bridges (LCC를 고려한 교량의 경제성 분석)

  • Shin, Yung-Seok;Pack, Jang-Ho;Ahn, Sung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.162-165
    • /
    • 2010
  • 합리적인 교량 대안선정을 위해서는 설계 시 경제성, 경관성, 안전성 및 기능성, 유지관리 용이성, 시공성 등 다양한 속성을 고려하여야 한다. 이 중 경제성은 초기비용뿐만 아니라 공용수명에 걸쳐 발생하는 유지관리비용, 보수 보강비용, 해체 폐기비용 등의 합인 총 생애주기비용에 대해 최소의 비용으로 최상의 가치를 창출하도록 하여야 한다. 본 연구에서는 건설계획과정에서 대표적으로 고려될 수 있는 대안으로 세 가지 교량 형식(강상자형교, 소수주형교, PSC-I형 거더교)을 대상구조물로 선정하고 교량의 공용수명은 상태등급곡선으로부터 추정한 내하율 곡선을 사용하여 산정하였다. LCC최적설계를 위해 설계변수, 제약조건, 목적함수를 구성하였고, 총 생애주기비용을 공용수명으로 나눈 연간생애주기비용을 사용하여 하여 합리적인 교량의 경제성 분석을 수행하였다.

  • PDF

Dynamic Serviceability Estimation of the Simple Railway Bridge with PSC I Girder (PSC I형 단순 철도교량의 동적사용성 평가)

  • Kang, Sung-Hoo;Choi, Tae-Geun;Park, Sun-Joon;Kim, Sung-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • In this study, dynamic serviceability of PSC, PreStressed Concrete, simple railway bridge with 25m span was estimated. All of the high speed and general train loads were considered at estimation. Natural frequency is estimated about 8Hz and includes within optimum natural frequency extent of the railway bridge. Also, the bridge was detected that resonance occurrence possibility does not exist. When travel the Moogunghwa train, acceleration response was measured to 0.43g that exceed limitation value 0.35g. Also, rotation angle of girders end did not satisfy design standard of railway bridge for high speed train, but impact coefficient and deflection satisfied design standard. As a result, that railway bridge was detected that is securing dynamic safety and serviceability partially, but methods to decrease vibration acceleration response are required.

Live Load Distribution in Prestressed Concrete I-Girder Bridges (I형 프리스트레스트 콘크리트 거더교의 활하중 분배)

  • Lee, Hwan-Woo;Kim, Kwang-Yang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.325-334
    • /
    • 2008
  • The standard prestressed concrete I-girder bridge (PSC I-girder bridge) is one of the most prevalent types for small and medium bridges in Korea. When determining the member forces in a section to assess the safety of girder in this type of bridge, the general practice is to use the simplified practical equations or the live load distribution factors proposed in design standards rather than the precise analysis through the finite element method or so. Meanwhile, the live load distribution factors currently used in Korean design practice are just a reflection of overseas research results or design standards without alterations. Therefore, it is necessary to develop an equation of the live load distribution factors fit for the design conditions of Korea, considering the standardized section of standard PSC I-girder bridges and the design strength of concrete. In this study, to develop an equation of the live load distribution factors, a parametric analysis and sensitivity analysis were carried out on the parameters such as width of bridge, span length, girder spacing, width of traffic lane, etc. As a result, the major variables to determine the size of distribution factors were girder spacing, overhang length and span length in case of external girders. For internal adjacent girders, the determinant factors were girder spacing, overhang length, span length and width of bridge. For internal girders, the factors were girder spacing, width of bridge and span length. Then, an equation of live load distribution factors was developed through the multiple linear regression analysis on the results of parametric analysis. When the actual practice engineers design a bridge with the equation of live load distribution factors developed here, they will determine the design of member forces ensuring the appropriate safety rate more easily. Moreover, in the preliminary design, this model is expected to save much time for the repetitive design to improve the structural efficiency of PSC I-girder bridges.

Experimental Performance Estimate of a 40m PSC I Girder for Railway Bridges (40m PSC I형 철도교의 동적 성능 평가)

  • Yeo, Inho
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.394-401
    • /
    • 2013
  • Here we report the results of an experimental laboratory test to verify the applicability to railway bridges of a PSC I girder of which the upper flange thickness was increased to improve sectional performance. The thicker this flange is, the further upward the neutral axis is moved. If in this way the span length can be increased to 40m long, the bridge may be constructed with four girders instead of five. Therefore, construction cost could be lowered by reducing the weight of the long span structure due to increased sectional efficiency. It was also necessary to be certain that the dynamic performance of this relatively flexible structure would be applicable to railway bridges. Therefore numerical analysis, as well as static and dynamic tests, was carried out for a full-size PSC I girder. Based on these results, it was verified that the performance of the PSC I railway bridge satisfied the performance criteria of the design code.

Comparison of Efficiency by Span in Various Railway Bridge Types (철도교량형식의 경간에 따른 효율성 비교연구)

  • Lee, Tae-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.7
    • /
    • pp.511-517
    • /
    • 2014
  • The superstructure type of the railway bridge in our country, is mainly classified into the box girder and the I-type girder. The box girder is widely used in the high speed railway bridge because of the safety due to dynamic behavior. The I-type girder is used in the conventional railway bridge, and is also divided into the general type and the composite type, and the newly modified types have been developed. According to the current railway bridge design code, the girder design by the span length in various railway bridge types are performed in this study. The suitable girder height by the span length are analyzed, and the comparative analysis of the structural efficiency and the economical efficiency is carried out. From this study, the composite type girder is appeared the good result in respect of the structural efficiency. However, in the economical aspect, the general I-type girder is required less cost than the other types.