• Title/Summary/Keyword: PSC Box Girder Bridge

Search Result 119, Processing Time 0.028 seconds

Effect of Near- and Far-Fault Earthquakes for Seismic Fragility Curves of PSC Box Girder Bridges (PSC 상자형교의 지진취약도 곡선에 대한 근거리 및 원거리 지진의 영향)

  • Jin, He-Shou;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.53-64
    • /
    • 2010
  • Seismic fragility curves of structures represent the probability of exceeding the prescribed structural damage state for a given various levels of ground motion intensity, such as peak ground acceleration (PGA). This means that seismic fragility curves are essential to the evaluation of structural seismic performance and assessments of risk. Most of existing studies have not considered the near- and far-fault earthquake effect on the seismic fragility curves. In order to evaluate the effect of near- and far-fault earthquakes, seismic fragility curves for PSC box girder bridges subjected to near- and far-fault earthquakes are calculated and compared. The seismic fragility curves are strongly dependent on the earthquake characteristics such as fault distance. This paper suggests that the effect of near- and far-fault earthquakes on seismic fragility curves of PSC box girder bridge structure should be considered.

Calculation of Crack Width of the Top Flange of PSC Box Girder Bridge Considering Restraint Drying Shrinkage (구속 건조수축을 고려한 PSC BOX 거더교 상부플랜지 균열폭 산정)

  • Young-Ho Ku;Sang-Mook Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • The PSCB girder bridge is a closed cross-section in which the top and bottom flanges and the web are integrated, and the structural characteristics are generally different from the bridges in which the girder and the floor plate are separated, so a maintenance plan that reflects the characteristics of the PSCB girder bridge is required. As a result of analyzing damage types by collecting detailed safety diagnosis reports of highway PSCB girder bridges, most of the deterioration and damage occurring during use is concentrated on the top flange. In particular, cracks in the bridge direction on the underside of the top flange occurred in about 70 % of the PSCB girder bridges to be analyzed, and these cracks were judged to be caused by indirect loads such as heat of hydration and drying shrinkage rather than structural cracks caused by external loads. In order to improve durability and reduce maintenance costs of PSCB girder bridges in use, it is necessary to control restraint drying shrinkage cracks from the design stage. Therefore, in this paper, the cracks caused by drying shrinkage under restraint, which is the main cause of cracks under the flanges of the top part of the PSCB girder bridge, were directly calculated using the Gilbert Model, and the influencing factors such as the amount of reinforcing bars, diameter and spacing of reinforcing bars were analyzed. As a result of the analysis, it was found that the crack width caused by restraint drying shrinkage exceeded the allowable crack width of 0.2 mm for reinforcing bars with a reinforcing bar ratio of 0.01 or less based on the H16 reinforcing bar and a reinforcing bar with a diameter greater than H19 based on the reinforcing bar ratio of 0.01. Finally, based on the results of the crack width review, a method for controlling the crack width of the top flange of the PSCB girder bridge was proposed.

Evaluation of Timependent Creep and Shrinkage of CIP Section in Asymmetric PSC Box Girder for Railroad Bridge (철도교용 비대칭 거더의 현장 타설부에서 나타나는 시간에 따른 크립 및 건조수축 평가)

  • Jung, Chi-Young;Park, Seung-Min;Ahn, Jin-Hee;Kim, Sang-Hyo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.973-978
    • /
    • 2011
  • In this study, effects due to differences of creep and shrinkage which is caused by material differences such as concrete characteristic and age in an asymmetric PSC box girder were evaluated. For this purpose the prestress distribution, creep and shrinkage were analyzed with the FE analysis program, LUSAS 14.3. As a result of the prestress, the stress distribution was stable. In case of the analysis result which was conducted with 1,000 days response time, the shear stress between PC section and CIP section is satisfied with design shear strength.

  • PDF

Examination of Value Engineering for Bridge Superstructures using Analytic Hierarchy Process (AHP 기법을 이용한 교량상부구조의 VE 검토)

  • Park, Jang-Ho;Shin, Yung-Seok;Ahn, Ye-Jun;Lee, Kwang-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.79-85
    • /
    • 2009
  • This study presents an algorithm to select the best alternative plane among various bridge superstructure types(Steel box girder, Rational girder, PSC-I girder) using Value Engineering(VE). Economical efficiency, landscape, constructability, maintenance, stability, function of bridge superstructure were taken into consideration in the designing of bridge. Economical efficiency was evaluated for each alternative plan with optimal design considering Life Cycle Cost(LCC). Repair and rehabilitation histories and some factors were set to get reasonable results. In the application of Analytic Hierarchy Process(AHP), consistency of Pairwise Comparisons Matrix was evaluated and the best plan was determined.

Static Analysis of Actual Bridges for Application of Thin Polymer Concrete Deck Pavements (폴리머 콘크리트 박막 교면포장 적용을 위한 실제 교량 정적 해석)

  • Jeong, Young Do;Kim, Jun Hyung;Lee, Suck Hong;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.421-431
    • /
    • 2011
  • In this paper, actual bridges constructed with SMA (Stone Mastic Asphalt) deck pavement and virtual bridges substituted the deck pavement with polymer concrete under the same conditions were statically analyzed to investigate applicability of the thin polymer concrete bridge deck pavements. PSC (prestressed Concrete) girder bridge, steel box girder bridge, PSC box girder bridge, and RC (Reinforced Concrete) rahmen bridge constructed with the SMA deck pavement were analyzed and compared to evaluate various types of the bridge. The bridge deck and pavement were assumed to be fully bonded and the stress and deformation during the construction were ignored while those due to pavement weight and vehicle loading were analyzed. According to the analysis results, the stress and deformation of the bridges using the polymer concrete due to the pavement weight were smaller than those using the SMA because of smaller self weight due to lighter unit weight and thinner thickness of the pavement. The stress and deformation of the bridges using the polymer concrete due to the vehicle loading were larger than those using the SMA because of the smaller area moment of inertia due to the thinner pavement thickness. In case that the pavement weight and vehicle loading applied simultaneously, the stress and deformation of the bridges using the polymer concrete were smaller because effect of self weight reduction was more dominant. Investigation of performance of the bridge deck pavement and analysis of economical efficiency are warranted.

Experimental Study on the the Maglev Train Guideway Girder : Composite System with PSC-U Type Girder and Precast Deck (자기부상열차 가이드웨이 거더의 실험적 연구: PSC-U 형 거더와 프리캐스트 바닥판의 합성 시스템)

  • Jin, Byeong-Moo;Kim, In-Gyu;Kim, Young-Jin;Yeo, In-Ho;Chung, Won-Seok
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.46-55
    • /
    • 2008
  • Maglev is a system that a train runs levitated above a rail. Therefore it is very important to maintain a constant levitation gap for achieving serviceability and ride comfort. This study is a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program in Korea, started in 2006. The aim of this study is development of rapid constructions of bridge superstructure for maglev. At present, precast deck is widely used because of its superiority to cast-in-place concrete on quality and the term of works. The research group suggested basic systems of maglev guideway with PSC-U type and trapezoidal open steel box type girder, and precast deck, cooperating with Korea Railroad Research Institute, the managing institute of the 3-1 subject. In this study, longitudinally full-scale guideway girder system was fabricated and static/dynamic test of the girder was performed for the purpose of the performance evaluation.

  • PDF

Development of QC Shell Element For Three Dimensional Construction Stage Analysis of PSC Bridge (PSC 교량의 3차원 시공 중 해석기법을 위한 쉘요소 개발)

  • Byun, Yun-Joo;Kim, Hyun-Ky;Song, Sak;Kim, Young-Hoe;Pornpeerakeat, Sacharuck;Kim, Ki-Du
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.557-562
    • /
    • 2007
  • In order to analyze the PSC box-girder bridge by the cantilever construction method, three dimensional analysis method using the PSC shell clement is suggested. The time dependent material functions are based on the ACI and CEB code. The time dependent concrete material properties considered are changes in strength, elastic modulus, creep and shrinkage. For the prestressing tendon, relaxation effects are considered. Anchorage and friction loses during tendon installations are also included. The ACI and CEB material models for creep and elastic modulus are also included.

  • PDF

Design and Safety Control in Construction Stage of Prestressed Concrete Box Girder Bridge with Corrugated Steel Web (파형강판 PSC 박스거더 교량의 설계 및 시공중 안전관리)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • The Ilsun Bridge is the world's longest box girder bridge(801m) with corrugated steel webs and has the widest width($21.2{\sim}30.9m$: tri-cellular cross section) among these kinds of composite girder bridges. It has fourteen spans(50m, 10 at 60m, 50m, 2 at 50.5m) where twelve spans are erected by the incremental launching method and two spans by full staging method. Special topics related to the structural safety of prestressed concrete box girder bridge with corrugated steel web in construction stage and service were reviewed. Investigations focus on the span-to-depth ratio, shear stress of corrugated steel webs and optimization of tile length of steel launching nose. The span-to-depth ratio of Ilsun bridge has been found to be well-planned while the corrugated steel web has been designed highly conservative and it has been observed that the conventional nose-deck interaction equation do not fit well with corrugated steel web bridges. As a result, detailed construction stage analysis was performed to check the stress levels and the safety of preceding design conditions. Finally, from the design review of Ilsun bridge, this study suggests optimal design issues which should be of interest in designing a prestressed concrete box girder bridge with corrugated steel webs.

Application of Digital Mock-Up Technology for Detail Design and Construction of Bridge (교량 상세 설계 및 시공을 위한 DMU 기술 적응 방안 연구)

  • Lee, Yoon-Bum;Kim, Min-Seok;Lee, Kwang-Myong;Shin, Hyun-Yang;Park, Kyoung-Lae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.277-282
    • /
    • 2007
  • In recent years, dramatic advances in information technology have motivated the construction industry to improve its productivity. Most construction companies are trying to utilize some new information technologies for enhancing the structure quality, shortening construction time, and reducing the construction cost. Digital Mock-Up (DMU) technology utilizes 3D CAD/CAM system that shows the shape of a structure on the computer screen. By modeling and assembling the structure in 3D dimensional environments, some errors in design can be found before or during construction. In this paper, DMU technology was applied to the detail design and construction of In-Cheon Bridge and its effectiveness was evaluated. All components of a PSC box girder segment were modeled and assembled by using of 3D CAD tools and then, some interferences between components and errors were found and revised appropriately before construction. Consequently, DMU technology would improve the quality of the structure and reduce time and cost for construction.

  • PDF

AHP 기법을 이용한 교량상부구조의 VE 검토

  • Park, Jang-Ho;Sin, Yeong-Seok;An, Ye-Jun;Lee, Gwang-Gyun
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.52
    • /
    • pp.58-66
    • /
    • 2011
  • This study presents an algorithm to select the best alternative plane among various bridge superstructure types (Steel box girder, Rational girder, PSC-I girder) using Value Engineering (VE). Economical efficiency, landscape, constructability, maintenance, stability, function of bridge superstructure were taken into consideration in the designing of bridge. Economical efficiency was evaluated for each alternative plan with optimal design considering Life Cycle Cost (LCC), Repair and rehabilitation histories and some factors were set to get reasonable results. In the application of Analytic Hierarchy Process (AHP), consistency of Pairwise Comparisons Matrix was evaluated and the best plan was determined.

  • PDF