• Title/Summary/Keyword: PSC Box Girder Bridge

Search Result 119, Processing Time 0.031 seconds

Verification Study of Train/Bridge Interaction Analysis through Field Tests of a High Speed Railway Bridge (고속철도 교량의 속도별 주행시험을 통한 교량/열차 상호작용해석의 검증)

  • Kim, Sung-Il;Lee, Joo-Beom;Kim, Hyun-Min;Lee, Hee-Up
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1555-1561
    • /
    • 2011
  • The dynamic behavior of a bridge under moving loads has been investigated over many years. Especially, with the introduction of High Speed Railway, numerous theoretical studies on the interaction problem between bridges and trains are carried out. In the present study, advanced bridge/train interaction analyses are performed and compared with field tests of a simply-supported 40m long PSC box girder bridge of Kyung-Bu High Speed Railway. Vertical displacements and vertical accelerations of a bridge with increasing speeds are analyzed. In addition, wheel load reduction rates and accelerations of a car-body of the train are investigated for a study of appropriateness of traffic safety criteria of bridge design specification.

  • PDF

Development of the Approximate Cost Estimating Model Using Statistical Inference for PSC Box Girder Bridge Constructed by the Incremental Launching Method (통계적 기법을 활용한 ILM압출공법 교량 상부공사 개략공사비 산정모델 개발 연구)

  • Kim, Sang-Bum;Cho, Ji-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.781-790
    • /
    • 2013
  • This research focuses on development of the conceptual cost estimation models for I.L.M box girder bridge. The current conceptual cost estimation for public construction projects is dependent on governmental average unit price references which has been regarded as inaccurate and unreliable by many experts. Therefore, there have been strong demands for developing a better way of conceptual cost estimating methods. This research has proposed three different conceptual cost estimating method for a P.S.C. girder bridge built with the I.L.M method. Model (I) attempts to seek the proper breakdown of standard works that are accountable for more than 95 percentage in total cost and calculates the amount of standard work's materials from the standard section and volume of I.L.M box girder bridge. Model (II) utilizes a correlation analysis (coefficient over 0.6 or more) between breakdown of standard works and input data that would be considered available information in preliminary design phase. Model(III) obtains conceptual estimating through multiple-regression analysis between the breakdown of standard works and all of input data related to them. In order to validate the clustering of coverage in the preliminary design phase, the variation of I.L.M cost coverage from multiple-regression analysis[model(III)] has been investigated which result in between -3.76% and 11.79%, comparing with AACE(Association for the Advancement of Cost Engineering) which informs its variation between -5% and +15% in the design phase. The model proposed from this research are envisioned to be improved to a great distinct if reliable cost date for P.S.C. girder bridges can be continually collected with reasonable accuracies.

Development of an Activity-Based Conceptual Cost Estimating Model for P.S.CBox Girder Bridge (대표공종 기반의 P.S.C 박스 거더교 개략공사비 산정모델 개발 -상부공사 중심으로-)

  • Cho, Ji-Hoon;Kim, Sang-Bum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.197-201
    • /
    • 2008
  • Conceptual cost estimates for domestic highway projects have generally been conducted using governmental unit-price references. Inaccuracies in governmental unit-price data has repeatedly addressed in the Korean construction industry which often lead to poor decision making and cost management practices. Thus, needs for developing a better way of conceptual cost estimating has been widely recognized. This research is considered as the first step in developing such model using real-world cost data based on actual construction activities. The data analyzed in this paper includes 41 P.S.C (Prestressed Concrete) Box bridges which broke into 4 categories based on construction methods such as I.L.M(Incremental Launching Method), M.S.S(Movable Scaffolding System), F.S.M(Full Staging Method), and F.C.M(Free Cantilever Method). Actual design documents; including actual cost estimating documents, drawings and specifications were carefully reviewed to effectively break down cost structures for PSC girder bridges. Among more than 40 cost categories for each P.S.C girder bridge type, 7 of them were identified which accounted for more than 95% of total construction cost (ILM: 99.47%, MSS: 99.22%, FSM: 98.18%, and FCM: 98.12%). In order to validate the clustering of cost categories, the variation of each cost category has been investigated which resulted in between -1.16 % and 0.59%.

  • PDF

Seismic Fragility Analysis for Probabilistic Seismic Performance Evaluation of Multi-Degree-of-Freedom Bridge Structures (확률론적 내진성능평가를 위한 다자유도 교량구조물의 지진취약도해석)

  • Jin, He-Shou;Song, Jong-Keol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.269-272
    • /
    • 2008
  • The seismic fragility curves of a structure represents the probability of exceeding the prescribed structural damage given various levels of ground motion intensityand the seismic fragility curve is essential to evaluation of structural performance and assessment of risk and loss of structures. The purpose of this paper is to develop seismic fragility functions for bridge structures in Koreaby reviewing those of advanced countries. Therefore, at first, we investigated development conditions of the seismic fragility functions. And the next highway bridges in Korea are classified into a number of categories and several typical bridges are selected to estimate seismic fragilities for using this analysis method in Korea. Finally, fragility curves for PSC Box girder bridge are estimated. The results show that the bridge classification and damage state play an important role in estimation of seismic damage and seismic fragility analysis for bridge structures.

  • PDF

Planning and Design of Honam High-Speed Railroad's Bridges (호남고속철도 4-2공구 교량 계획 및 설계)

  • Bae, Min-Hyuk;Woo, Dong-In;Cho, Hyun;Ahn, Kwang-Su;Han, Nock-Hee
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1470-1477
    • /
    • 2010
  • In 2004, Korea has become the world's fifth-express train states, Honam high-speed railroad which goes down another line with existing Kyoungbu high-speed railroad is divided 19 construction sectors, its total length is 230.9 km and it will be constructed by 2017. This site is located in Jeollabukdo Jeong-eup district along 9.38 km. There are three representative bridges. ;One is the PSC box girder bridge, another is the Extradosed bridge, and the other is the three continuous spans half-through hybrid arch bridge. This paper shows a planning and design of these bridges.

  • PDF

Design and Construction of Hybrid Bridge with Corrugated Steel Web by Incremental Launching Method (압출공법에 의한 복부 파형강판 복합교량의 설계 및 시공)

  • Kim Kwang Soo;Jung Kwang Hoe;Sim Chung Wook;Han Jung Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.411-414
    • /
    • 2005
  • This paper presents how to design and construct the Il-sun bridge, the first PSC box girder bridge with Corrugated Steel Web(CSW) in Korea, including 3D analysis results according to construction steps. Also, the 3D analysis for the beams with CSW was performed for the purpose of verifying the role of the flange plate. As the results of this analysis, it is founded that the flange plate plays a role to resist the flexural strength in the nonlinear region. In the near future, we are plan to carry out the load test for these beams with CSW.

  • PDF

Longitudinal Displacement Analysis for Express Railway PSC Box-Girder Bridges (고속철도 PSC 박스거더의 종방향 신축변위 장기거동분석)

  • Yim Myoung-Jae;Choi Il-Yoon;Lee Jun S.;Lee Hyun-Suk
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1102-1107
    • /
    • 2004
  • High-speed railway bridges subject to effect of statical loads by temperature change as well as dynamic loads by interaction between vehicle load which run specially fast and behavior of bridges, If suitable longitudinal expansion by temperature change of bridge does not happened, it can cause unhealthy condition for the parts of bridges as well as can generate addition stress to bridges, For these reason, Analysis and Estimation of data about behavior of bridges occupies important factor in that estimate the remaining life of bridges and select the maintenance, repair and retrofit. In this paper, Analysis for the long-term behavior of bridges using Longitudinal displacement and Temperature data that is actuality measured data to the bridges of Seoul-Busan high speed railroad test section has been made.

  • PDF

The Effect of KTX Vehicle Size Adjustment on High-Speed Railway Bridge Vibration : Numerical Study (수치해석을 통한 KTX 객차 길이 조정이 고속철도교량의 동적거동 특성에 미치는 영향 연구)

  • Shin, Jeong-Ryol;Kim, Hyun-Min;Sohn, Hoon;Yun, Chung-Bang
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.854-863
    • /
    • 2008
  • A high attention has been paid on the running safety of Korean high-speed train, KTX. In running of KTX on bridge, the running unsafety problem issued from a resonance phenomenon of bridge, which was usually caused by the periodic wheel-loads of train. Therefore, many researches on this running safety of train on bridge have been conducted by domestic or foreign researchers. In this paper, for PSC box-girder bridge which is the representative high-speed railway bridge type, some numerical analyses on the dynamic characteristics of bridge with the non-periodic wheel-loads through vehicle size adjustment were performed. These numerical analyses shows the fact that the resonance phenomenon on bridge was mitigated through vehicle size adjustment. Additional numerical analyses on the vibration reduction of bridge in accordance with the location of size-adjusted vehicle were performed. From these results, it was represented that the adjustment of vehicle size has an effect on the running safety of train as well as the ride comfort.

  • PDF

Seismic Fragility Analysis for Probabilistic Performance Evaluation of PSC Box Girder Bridges (확률론적 내진성능평가를 위한 PSC Box 거더교의 지진취약도 해석)

  • Song, Jong-Keol;Jin, He-Shou;Lee, Tae-Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.119-130
    • /
    • 2009
  • Seismic fragility curves of a structure represent the probability of exceeding the prescribed structural damage state for a given various levels of ground motion intensity such as peak ground acceleration (PGA), spectral acceleration ($S_a$) and spectral displacement ($S_d$). So those are very essential to evaluate the structural seismic performance and seismic risk. The purpose of this paper is to develop seismic fragility curves for PSC box girder bridges. In order to construct numerical fragility curve of bridge structure using nonlinear time history analysis, a set of ground motions corresponding to design spectrum are artificially generated. Assuming a lognormal distribution, the fragility curve is estimated by using the methodology proposed by Shinozuka et al. PGA is simple and generally used parameter in fragility curve as ground motion intensity. However, the PGA has not good relationship with the inelastic structural behavior. So, $S_a$ and $S_d$ with more direct relationship for structural damage are used in fragility analysis as more useful intensity measures instead of PGA. The numerical fragility curves based on nonlinear time history analysis are compared with those obtained from simple method suggested in HAZUS program.

Long-Term Prediction of Prestress in Concrete Bridge by Nonlinear Regression Analysis Method (비선형 회귀분석기법을 이용한 콘크리트 교량 프리스트레스의 장기 예측)

  • Yang, In-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.507-515
    • /
    • 2006
  • The purpose of the paper is to propose a method to give a more accurate prediction of prestress changes in prestressed concrete(PSC) bridges. The statistical approach of the method is using the measurement data of the structural system to develop a nonlinear regression analysis. Long-term prediction of prestress is achieved using nonlinear regression analysis. The proposed method is applied to the prediction of prestress of an actual prestressed concrete box girder bridge. The present study represents that confidence interval of long-term prediction becomes progressively narrower with the increase of in-situ measurement data. Therefore, the numerical results prove that a more realistic long-term prediction of prestress changes in PSC structures can be achieved by employing the proposed method. The prediction results can be efficiently used to evaluate prestress during the service life of structure so that the remaining prestress exceeds the control criteria.