• Title/Summary/Keyword: PSA (pressure swing adsorption)

Search Result 49, Processing Time 0.02 seconds

Separation of $CH_4/CO_2/N_2$ Mixture by Pressure Swing Adsorption (PSA법을 이용하여 $CH_4/CO_2/N_2$ 혼합가스 중에서 메탄의 분리)

  • Cho, Woo-Ram;Jeong, Gu-Hyun;Shin, Young-Hwan;Yoo, Hee-Chan;Na, Byung-Ki
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.389-394
    • /
    • 2011
  • A compact adsorption-based process for removal of carbon dioxide and nitrogen from natural gas has been discussed. Among the adsorption-based processes, especially, the pressure swing adsorption (PSA) process has been a suitable unit operation for the purification and separation of gas because of low operation energy and cost. A step cycle is made up of pressurization, feed, equalization, blowdown and rinse. In this work, the PSA process is composed of zeolite 13X and carbon molecular sieve (CMS) for removal of carbon dioxide and nitrogen from mixed gas containing $CH_4/CO_2/N_2$ (75:21:4 vol%). A CMS selectively removes carbon dioxide and a zeolite 13X separates nitrogen from methane. CMS is investigated experimentally due to the high throughput of the faster diffusing component ($CO_2$). The gas composition of top, bottom and feed tank was measured with the gas chromatography (GC) using TCD detector, helium as carrier gas and packed column for analysis of methane, carbon dioxide, and nitrogen.

The Evaluation of CO Adsorbents Used in PSA Process for the Purification of Reformed Hydrogen (개질 수소 정제용 PSA 공정을 위한 CO 흡착제의 성능 평가)

  • PARK, JIN-NAM
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.628-635
    • /
    • 2016
  • Natural gas reformed hydrogen is used as a fuel of fuel cell vehicle, PSA process is used for the purification of reformed hydrogen. In this study, the performance of CO adsorbent in PSA process was evaluated. Zeolite adsorbents used in the commercial PSA process is used. The physical and chemical properties of adsorbents were characterized using BET apparatus, XRD, and FE-SEM. The breakthrough apparatus modified from GC was used for the CO breakthrough experiment, the quantitative analysis of CO adsorption capacity was performed using CO breakthrough curve. Zeolite 10X and 13X showed superior CO adsorption capacity than activated alumina. The CO adsorption capacity of zeolite 10X is more than twice of zeolite 13X even the BET surface area is low. It seems that the presence of $Ca^{2+}$ cation in zeolite 10X is beneficial to the adsorption of CO.

Capability of CO2 on Metal-Organic Frameworks-Based Porous Adsorbents and Their Challenges to Pressure Swing Adsorption Applications (금속-유기 골격계 다공성 흡착제의 이산화탄소 흡착성능과 압력순환흡착 공정 적용의 문제점)

  • Kim, Moon Hyeon;Choi, Sang Ok;Choo, Soo Tae
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.370-378
    • /
    • 2013
  • This review has shown the capability of MOFs and ZIFs materials to adsorb $CO_2$ under typical PSA temperatures and pressures. The usual operating conditions are adsorption temperatures of $15{\sim}40^{\circ}C$ and adsorption pressures of 4~6 bar based on numerous PSA processes which are widely employed in gases industry for adsorptive separation of $CO_2$. The extent of $CO_2$ adsorption on the microporous materials depends on the metal species and organic linkers existing in the frameworks. The pore size and the surface area, and the process variables are the key parameters to be associated with the efficiency of the adsorbents, particularly adsorption pressures if other variables are comparable each other. The MOFs and ZIFs materials require high pressures greater than 15 bar to yield significant $CO_2$ uptakes. They possess a $CO_2$ adsorption capacity which is very similar to or less than that of conventional benchmark adsorbents such as zeolites and activated carbons. Consequently, those materials have been much less cost-effective for adsorptive $CO_2$ separation to date because of very high production price and the absence of commercially-proven PSA processes using such new adsorbents.

Separation of Freon-12 and Air Mixture by Adsorption Process (흡착공정을 이용한 프레온-12와 공기혼합가스의 분리)

  • 강석호;이태진;안희관;김윤갑
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.101-106
    • /
    • 1993
  • In order to separate the Freon-12 and air mixture$(CF_2Cl_2/Air=0.1/99.9 vol.%)$ by pressure swing adsorption (PSA), the breakthrough curve was experimentally observed in a fixed bed adsorption column. A single adsorber was packed with various adsorbents such as, the activated carbon(S-AC, W-AC) and the molecular sieve(MS-5A, MS-13X). The order of appearance of breakthrough curve is MS-5A > MS-13X > W-AC > S-AC. The activated carbon was found to be more effective adsorbent for separating Freon-12 from the mixture than the molecular sieve was. From the experimental data obtained by the separation of Freon-12 gas out of the air stream in the steady-state PSA process cycle, whose size is the same one of column used for the breakthrough curve observation, it has been confirmed that Freon-rich gas could be obtained from the purge step of PSA and Freon-free air could be obtained from the adsorption step of PSA cycle.

  • PDF

Rigorous dynamic simulation and determination of initial operating conditions for two-bed PSA processes (두 탑 PSA공정의 상세 동적모사 및 초기운전조건 결정)

  • Hwang, Deok-Jae;Moon, Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1520-1523
    • /
    • 1997
  • A rigorous dynamic simulation was performed in binary gas mixture H$_{2}$/CO (70:30 vol.%) to determinate start-up operating conditions of PSA(Pressure Swing Adsorption) processes. The rigorous dynamic model for the PSA process contains an Ergun equation for expressing the pressure drop in a bed, and valve equations to compute the boundary pressure change of the bed. As the result of the continuous dynamic simulation of 100 operating cyles in various initial conditions, the unsteady-state appeared in the early period and the cyclic steady-state came out about 20th cycle in feed condition and vaccum condition, and 30th cycle in pure H$_{2}$ condition. As time goes by valve equations made change the pressure at each end of the bed in ressurization, countercurrunt-depressurization and pressure equalization steps. The H$_{2}$ purity and the recovery is 99.99% and 86.73% respectively, which is slightly higher than the experimental data. Main contributiion of this study includes supplying fundamental technologies of handling combined variables PSA processes by developing rigorous models.

  • PDF

A Study on the Adsorption and Desorption Characteristics of Metal-Impregnated Activated Carbons with Metal Precursors for the Regeneration and Concentration of Ammonia (암모니아의 재생 및 농축을 위한 금속 전구체에 따른 금속 첨착 활성탄의 흡착 및 탈착 특성에 관한 연구)

  • Cho, Gwang Hee;Park, Ji Hye;Rasheed, Haroon Ur;Yoon, Hyung Chul;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.137-144
    • /
    • 2020
  • Metal-impregnated activated carbons were prepared via ultrasonic-assisted impregnation method for regeneration and low ammonia concentration. Magnesium and copper were selected as metals, while chloride (Cl-) and nitrate (NO3-) precursors were used to impregnate the surface of activated carbon. The physical and chemical properties of the prepared adsorbents were characterized by TGA, BET, and NH3-TPD. The ammonia breakthrough test was carried out using a fixed bed and flowing ammonia gas (1000 mg L-1 NH3, balanced N2) at 100 mL min-1, under conditions of temperature swing adsorption (TSA) and pressure swing adsorption (PSA, 0.3, 0.5, 0.7, 0.9 Mpa). The adsorption and desorption performance of ammonia were in the order of AC-Mg(Cl) > AC-Cu(Cl) > AC-Mg(N) > AC-Cu(N) > AC through NH3-TPD and TSA and PSA processes. AC-Mg(Cl) using MgCl2 showed the average adsorption amount of 2.138 mmol/g at TSA process. Also, AC-Mg(Cl) showed the highest initial adsorption amount of 3.848 mmol/g at PSA 0.9 Mpa. When metal impregnated the surface of the activated carbon, it was confirmed that not only physical adsorption, but also chemical adsorption increased, making enhancement in adsorption and desorption performances possible. Also, the prepared adsorbents showed stable adsorption and desorption performances despite repeated processes, confirming their applicability in the TSA and PSA processes.

Techno-economic Comparison of Absorption and Adsorption Processes for Carbon Monoxide (CO) Separation from Linze-Donawitz Gas (LDG) (Linze-Donawitz 가스로부터 일산화탄소(CO) 분리를 위한 흡수 및 흡착공정에 대한 기술경제성 비교)

  • Lim, Young-Il;Choi, Jinsoon;Moon, Hung-Man;Kim, Gook-Hee
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.320-331
    • /
    • 2016
  • Linze-Donawitz gas (LDG) adjunctively produced in the steel mill contains over 60% of CO. Two processes that recover high purity CO from LDG were considered: COSORB and CO-Pressure swing adsorption (PSA). This study aimed to decide which one is more economically feasible than the other by techno-economic analysis (TEA). From the technical point of view of TEA, the process flow diagram (PFD) was constructed, the mass and energy balances were calculated, and the equipment type and size were determined in order to estimate the total capital investment (TCI) and the total production cost (TPC). From the economic point of view of TEA, economic performance such as return on investment (ROI) and payback period (PBP) was evaluated, and the sensitivity analysis was carried out to identify key factors influencing ROI and PBP. It was found that CO-PSA is more economically feasible due to higher ROI and lower PBP. The CO price highly influenced ROI and PBP.

Hydrogen Separation from Binary and Ternary Mixture Gases by Pressure Swing Adsorption (PSA 공정에 의한 이성분 및 삼성분 혼합기체로부터 수소분리)

  • Kang, Seok-Hyun;Jeong, Byung-Man;Choi, Hyun-Woo;Ahn, Eui-Sub;Jang, Seong-Cheol;Kim, Sung-Hyun;Lee, Byung-Kwon;Choi, Dae-Ki
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.728-739
    • /
    • 2005
  • An experiment and simulation were performed for hydrogen separation of mixtures by PSA (pressure swing adsorption) process on activated carbon. The binary ($H_2/Ar$; 80%/ 20%) and ternary ($H_2/Ar/CH_4$; 60%/ 20%/ 20%) mixtures were used to study the effects of feed composition. The cyclic performances such as purity, recovery, and productivity of 2bed-6step PSA process were experimentally and theoretically compared under non-isothermal and non-adiabatic conditions. The develped process produced the hydrogen with 99% purity and 75% recovery from both processes. Therefore, optimal separation condition was referred multicomponent gas mixtures.

Production of High Purity Oxygen by Combination of Membrane and PSA Methods (분리막과 PSA혼합법에 의한 고순도 산소의 제조)

  • Hwang, Sun-Tak
    • Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • There are growing needs to produce relatively high purity(99.0% or higher) oxygen at low cost. For small scale production, both pressure swing adsorption(PSA) and membrane process are competitive and less expensive or more convenient than well known cryogenic fractionation technology. A continuous membrane column(CMC) combined with a PSA oxygen generator can be employed to produce high purity oxygen continuously. The oxygen enriched gas generated by a PSA unit, with a concentration of 93~94%, is fed to the CMC that consism of three modules of poly(imide) hollow fibers. Several experiments were conducted by varying parameters, such as feed flow rate, transmembrane pressure drop, stage cut, and feed location in order to obtain a high oxygen concentration above 99.0%. A two-series unit mode was also employed with CMC operation to optimize the given membrane area.

  • PDF