• Title/Summary/Keyword: PSA(Paper sludge Ash)

Search Result 6, Processing Time 0.021 seconds

A Study on Pretreated Paper Sludge Ash for Cement Admixture (시멘트 혼합재로의 전처리 제지애쉬 적용가능성 연구)

  • Jung, Jae-Hyun;Seo, Seong-Kwan;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.58-64
    • /
    • 2016
  • Paper industry discharges many by-products and quantity of PSA (Paper sludge ash) has been increased. In this study, hydration water was added to PSA for use as cement admixture. PSA with added water was mixed with anhydrite and this mixture was used as cement substitute. Physical properties of PSA cement were changed by contents of PSA, but PSA cement containing PSA less than 10% had similar properties to those of OPC. Compressive strength of PSA cement mortar had a certain relationship with $Ca(OH)_2$ content. Compressive strength at 3 days increased, as $Ca(OH)_2$ content increased. However, the strength at 28 days increased, as $Ca(OH)_2$ content decreased.

Study on Carbon Dioxide Storage through Mineral Carbonation using Sea Water and Paper Sludge Ash (해수와 제지슬러지소각재의 광물탄산화 반응을 이용한 이산화탄소 저장 연구)

  • Kim, Dami;Kim, Myoung-jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • Mineral carbonation is a technology for permanently storing carbon dioxide by reacting with metal oxides containing calcium and magnesium. In this study, we used sea water and alkaline industrial by-product such as paper sludge ash (PSA) for the storage of carbon dioxide through direct carbonation. We found the optimum conditions of both sea water content (mixing ratio of sea water and PSA) and reaction time required in the direct carbonation through various experiments using sea water and PSA. In addition, we compared the amounts of carbon dioxide storage with the cases when sea water and ultra-pure water were separately used as solvents in the direct carbonation with PSA. The amount of carbon dioxide storage was calculated by using both solid weight increase through the carbonation reaction and the contents of carbonate salts from thermal gravimetric analysis. PSA particle used in this study contained 67.2% of calcium. The optimum sea water content and reaction time in the carbonation reaction using sea water and PSA were 5 mL/g and 2 hours, respectively, under the conditions of 0.05 L/min flow rate of carbon dioxide injected at $25^{\circ}C$ and 1 atm. The amounts of carbon dioxide stored when sea water and ultra-pure water were separately used as solvents in the direct carbonation with PSA were 113 and $101kg\;CO_2/(ton\;PSA)$, respectively. The solid obtained through the carbonation reaction using sea water and PSA was composed of mainly calcium carbonate in the form of calcite and a small amount of magnesium carbonate. The solid obtained by using ultra-pure water, also, was found to be carbonate salt in the form of calcite.

Experimental and analytical study on flexural behaviour of fly ash and paper sludge ash based geopolymer concrete

  • Senthamilselvi, P.;Palanisamy, T.
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.157-166
    • /
    • 2018
  • This article presents the flexural behaviour of reinforced fly ash (FA)-based geopolymer concrete (GPC) beams with partial replacement of FA for about 10% by weight with paper sludge ash (PSA). The beams were made of M35 grade concrete and cured under three curing conditions for comparison viz., ambient curing, external exposure curing, and oven curing at $60^{\circ}C$. The beams were experimentally tested at the 28th day of casting after curing by conducting two-point loading flexural test. Performance aspects such as load carrying capacity, first crack load, load-deflection and moment-curvature behaviours of both types of beams were experimentally studied and their results were compared under different curing conditions. To verify the response of reinforced GPC beams numerically, an ANSYS 13.0 finite element program was also used. The result shows that there is a good agreement between computer model failure behaviour with the experimental failure behaviour.

Carbon Dioxide Storage and Calcium Carbonate Production through Indirect Carbonation Using Paper Sludge Ash and Chelating Reagents (제지슬러지소각재 및 킬레이트제 활용 간접탄산화 방법을 통한 이산화탄소 저장 및 탄산칼슘 생성)

  • Jeon, Junhyeok;Kim, Myoung-Jin
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.35-44
    • /
    • 2019
  • In this study, we conducted experiments to store $CO_2$ and produce $CaCO_3$ through indirect carbonation using paper sludge ash (PSA) and three chelating reagents (fumarate, IDA and EDTA). Fumarate and IDA used as solvents could facilitate the indirect carbonation reaction to store more $CO_2$ than water. When 0.1 M fumarate and IDA were used, $CO_2$ storage was 63 and $89kg-CO_2/ton-PSA$, respectively, and $CaCO_3$ yield was 144 and $202kg-CaCO_3/ton-PSA$. For the case of EDTA, however, the carbonation was hardly progressed. As either the concentration or Ca-ligand stabilization constant of each chelating reagent increased, the calcium extraction efficiency from PSA increased. In addition, the carbonation efficiency was influenced by the Ca-ligand stabilization constant. As the Ca-ligand stabilization constant increased, more calcium could be extracted from the PSA. With the constant larger than that of $CaCO_3$ ($10^{8.35}$), however, the carbonation reaction was not proceeded.

Quality Properties Sintering Lightweight Aggregate for Structural Concrete according to manufacturing Condition (제조 조건에 따른 구조체용 소성 경량골재의 품질 특성)

  • 고대형;김재신;김상운;문경주;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.339-344
    • /
    • 2000
  • The purpose of this study is to evaluate qualities of lightweight aggregate for structural concrete according to mixing proportions, pelletizer condition, sintering condition and to choose the suitable main and sub material. Main material used paper sludge ash(PSA) and sub material used clay, fly-ash and paper sludge. The aggregates are sintered after granulating at the various condition. As the result of test, quality difference of aggregate showed clear according to the mixing proportions and sintering conditions. It was possible to manufacture lightweight aggregate for structural concrete that dry specific gravity was ranged about 0.9 to 1.4 also the test results of the aggregates showed same physical properties compared with abroad product as 10% granules crushing value from 5 or 10% and absorption percentage from 10 to 20%.

  • PDF

The Evaluation on Solidification of Dredged Sediment for Recycle from Stagnant Water Area (정체성 수역 퇴적물 재활용을 위한 고형화 평가)

  • Kim, Sang Hyun;Ahn, Tae Woong;Choi, I Song;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.63-69
    • /
    • 2012
  • Sediment has been increasingly acknowledged as a carrier in water system and an available contamination. For this reason, dredging of sediment in reservoir to remediate water quality and secure storage capacity is conducted annually. However, disposal of numerous dredged sediment is necessary as a secondary problem. Currently, in Korea, dredged sediment is classified as waste to be reclamated or recycled into sandy soil, however, they are still in trouble because of spacial and environmental problem. Therefore, rather than simple disposal or reuse into sandy soil, it is necessary to research on method to manage main cause of pollution and increase the value as a resource. In this study, we intend to develop a recycle technology for numerous dredged sediment produced by dredging in deteriorated reservoirs using solidificator (stabilizer). To achieve this, we will consider utilization of dredged sediment and evaluation of use possibility as natural recycle by analysis the characteristics of soil-solidificator mixture in terms of physicochemical properties and the mixing ratio between sediment and solidificator.