• Title/Summary/Keyword: PROCESS ADDITIVES

Search Result 511, Processing Time 0.026 seconds

Properties of Capacity on Carbon Electrode in EC : MA Electrolyte II. Effect of Additives on Initial Irreversible Capacity (EC : MA 혼합전해질에서 카본 전극의 용량 특성 II. 초기 비가역 용량에 대한 첨가제의 효과)

  • Park, Dong-Won;Kim, Woo-Seong;Son, Dong-Un;Choi, Yong-Kook
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.575-579
    • /
    • 2006
  • Solid electrolyte interface is formed on a carbon electrode used as an anode in Li-ion battery, which can be of $Li^{+}$ intercalation/deintercalation during the first cycle. The passivation film formed by a solvent decomposition during the initial charge process affects cell performance and it was one of the main reason of an initial irreversible capacity. This paper describes the use, for the first time, of $Li_2CO_3$ as the additive for the formation of a passivation film on the carbon surface to suppress the initial irreversible reaction. Chronopotentiometry, cyclic voltammetry, and impedance spectroscopy were used to investigate the effects of the $Li_{2}CO_{3}$ additive. Scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction were also used to monitor changes in the surface morphology and composition of the passivation film formed by solvent decomposition and the precipitation of $Li_{2}CO_{3}$. The addition of $Li_{2}CO_{3}$ to a solution of 1 M $LiPF_{6}$/EC:MA (1:3, v/v) resulted in a decrease in the initial irreversible capacity and it was due to the suppression of the solvent decomposition on the electrode surface.

Dynamics of Nitrogen in Poultry Manure during its Processing (계분(鷄糞)의 부숙건조(腐熟乾燥)와 질소(窒素)의 행동(行動))

  • Oh, Wang-Keun
    • Korean Journal of Environmental Agriculture
    • /
    • v.3 no.1
    • /
    • pp.57-62
    • /
    • 1984
  • Laboratory experiments of poultry manure incubated for three days at $35^{\circ}$ were conducted to learn some informations on the relief of nitrogen loss during processing. Results obtained are as follows: 1) Blending phosphoric acid, triplesuperphosphate or superphosphate to poultry manure could reduce the volatilization of ammonia and saved nitrogen in the manure by 80 to 90 percent, though nonblending saved the nitrogen only by 40 to 60 percent during three days incubation. 2) The additives must be blended thoroughly to the manure to obtain the least loss of nitrogen during the incubation. 3) The severe loss of nitrogen was occurred from the drying process of fermented manure of both treatment, that is $60{\sim}80$ percent loss at the blended treatment with phosphoric acid, triplesuperphosphate or superphosphate, and $70{\sim}90$ percent loss at non-blended. 4) Drying the fermented manure under the fixed temperature of about $65^{\circ}$ for three days saved more nitrogen than dried manure under the temperature gradually raised from the room temperature to about $45{\sim}65^{\circ}$ for three days.

  • PDF

Emulsification of Natural Sunscreen with Green Tea Extract : Optimization Using CCD-RSM (녹차추출물이 함유된 천연 자외선차단 크림의 제조: CCD-RSM을 이용한 최적화)

  • Lee, Seung Bum;Zuo, Chengliang;Xu, Yang;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.532-538
    • /
    • 2020
  • In this study, emulsification process were conducted to manufacture the natural sunscreen from raw materials such as shea butter, olive emulsifier wax, and green tea extract. The emulsification was optimized by using the central composite design model-response surface methodology (CCD-RSM) where the response values were established as the mean droplet size (MDS) and emulsion stability index (ESI) after 7 days in addition to UV absorbance at 300nm. The amount of emulsifier and additives and emulsification time were established as operating variables and the optimal conditions of sunscreen emulsification were accepted as 3.70, 2.47 wt.%, and 15.42 min, respectively according to the result of CCD-RSM. On the other hand, the response values were estimated as 1173.80 nm and 99.56% for MDS and ESI, respectively, after 7 days, in addition to UV absorbance at 300 nm (2.47). The average error from actual experiments was a low level as about 3.0 ± 1.5%, which is mainly due to the fact that the optimization using CCD-RSM applied in this study was in the relatively high significant level.

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • Mun, Ju-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

Preparation and characterization of poly(dimethylsiloxane) foam prepared by hydrogen condensation reaction (수소 축합 반응에 의한 폴리디메틸실록산 미세 발포체의 제조 및 물성분석 연구)

  • Lee, Soo;Moon, Sung Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.802-812
    • /
    • 2016
  • Silicone foam is very useful as flame resistant material for many industrial areas such as high performance gasketing, thermal shielding, vibration mounts, and press pads. A silicone foam was prepared through simultaneous crosslinking and foaming by hydrogen condensation reaction of a vinyl-containing polysiloxane (V-silicone) and a hydroxyl-containing polysiloxane (OH-silicone) with hydride containing polysiloxane (H-silicone) in the presence of platinum catalyst and imorganic filler at room temperature. This is more convenient process for silicone foam manufacturing than the conventional separated crosslinking and foaming systems. Funtionalized silicones we used in this experiment were consisted with a V-silicone containing 1,0 meq/g of vinyl groups and a viscosity of 20 Pa-s, an OH-silicone with 0.4 meq/g of hydroxyl groups and a viscosity from 50 Pa-s, and an H-silicone containing 7.5 meq/g of hydride groups and a viscosity of 0.06 Pa.s. The effects of compositions of functionalized silicones and additives, such as catalyst and filler on the structure and mechanical properties of silicone foam were studied. 0.5 wt% of Pt catalyst was enough to accelerate the foaming rate of silicone resins. The addition of OH-silicone with lower viscosity accelerates the initial foaming rate and decreases the foam density, but the addition of V-silicone with lower viscosity reduces the tensile strength as well as the elongation. The final foam density, tensile strength, and elogation of silicone foam prepared under the SF-3 condition increase maximum to $0.58g/cm^3$, $3,51kg_f/cm^2$, and 176 %, repectively. We found out the filler alumina also played an important role to improve the mechanical properties of silicone foams in our foaming system.

Effect of Lugol's Iodine Preservation on Cyanobacterial Biovolume and Estimate of Live Cell Biovolume Using Shrinkage Ratio (Lugol's Iodine Solution 첨가 후 보존 기간별 남조류 세포부피 변화 및 수축비를 이용한 생세포 부피 산정)

  • Park, Hae-Kyung;Lee, Hyeon-Je;Lee, Hae-Jin;Shin, Ra-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.375-381
    • /
    • 2018
  • The monitoring of phytoplankton biomass and community structure is essential as a first step to control the harmful cyanobacterial blooms in freshwater systems, such as seen in rivers and lakes, due to the process of eutrophication and climate change. In order to quantify the biomass of phytoplankton with a wide range in size and shape, the measurement of cell biovolume along with cell density is required for a comprehensive review on this issue. However, most routine monitoring programs preserve the gathered phytoplankton samples before analysis using chemical additives, because of the constraint of time and the number of samples. The purpose of this study was to investigate the cell biovolume change characteristics of six cyanobacterial species, which are common bloom-causing cyanobacteria in the Nakdong River, after the preservation with Lugol's iodine solution. All species showed a statistically significant difference after the addition of Lugol's iodine solution compared to the live cell biovolume, and the cell biovolume decreased to the level of 34.0 ~ 56.3 % at maximum in each species after the preservation. The nonlinear regression models for determining the shrinkage ratio by a preservation period were derived by using the cell biovolume measured until 180 days preservation of each target species, and the equation to convert the cell biovolume measured after preservation for a certain period to the cell biovolume of viable cell was derived using that formula. The conversion equation derived from this study can be used to estimate the actual cell biovolume in the natural environment at the time of sampling, by using the measured biovolume after the preservation in the phytoplankton monitoring. Moreover this is expected to contribute to the final interpretation of the water quality and aquatic ecosystem impacts due to the cyanobacterial blooms.

Optimization of Extraction Conditions of Antioxidant Activity and Bioactive Compounds from Rice Bran by Response Surface Methodology (반응표면분석법을 이용한 미강으로부터 항산화 활성 및 생리활성물질의 초음파 추출조건 최적화)

  • Gam, Da Hye;Jo, Jae Min;Jung, Hyun Jin;Kim, Jin Woo
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.726-733
    • /
    • 2018
  • The rice's waste byproduct is known as a rice bran and produced annually about 400,000 to 600,000 tons. Most of the rice bran are used as a livestock feed or waste disposal, and needed to be used to produce high-added substances, such as bioactive materials. In this study, extraction conditions of the ultrasound-assisted extraction (UAE) of the rice bran were optimized using a statistically-based optimization. The influence of extraction variables including the extraction time ($X_1$), extraction temperature ($X_2$) and ethanol concentration ($X_3$) were investigated using the response surface methodology in order to determine optimum extraction conditions which maximize total phenolic compounds (TPC), total flavonoid compounds (TFC) and electron donating abilities (EDA). The optimal UAE from rice bran was achieved under the extraction temperature of $94.9^{\circ}C$, extraction time of 41.6 minute and ethanol concentration of 74.0% (v/v) with maximum yields of TPC 2.78 mg GAE/g DM, TFC 1.63 mg QE/g DM and EDA 42.86%. The UAE process shows its potential to the extraction of bioactive and antioxidant compounds from rice bran in a short extraction time and low temperature. Also, it is proposed that rice bran could be considered as food additives and cosmeceutical products.

A Study on The Effect of Current Density on Copper Plating for PCB through Electrochemical Experiments and Calculations (전기화학적 해석을 통한 PCB용 구리도금에 대한 전류밀도의 영향성 연구)

  • Kim, Seong-Jin;Shin, Han-Kyun;Park, Hyun;Lee, Hyo-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.49-54
    • /
    • 2022
  • The copper plating process used to fabricate the submicron damascene pattern of Cu wiring for Si wafer was applied to the plating of a PCB pattern of several tens of microns in size using the same organic additives and current density conditions. In this case, the non-uniformity of the plating thickness inside the pattern was observed. In order to quantitatively analyze the cause, a numerical calculation considering the solution flow and electric field was carried out. The calculation confirmed that the depletion of Cu2+ ions in the solution occurred relatively earlier at the bottom corner than the upper part of the pattern due to the plating of the sidewall and the bottom at the corner of the pattern bottom. The diffusion coefficient of Cu2+ ions is 2.65 10-10 m2/s, which means that Cu2+ ions move at 16.3 ㎛ per second on average. In the cases of small damascene patterns, the velocity of Cu2+ ions is high enough to supply sufficient ions to the inside of the patterns, while sufficient time is required to replenish the exhausted copper ions in the case of a PCB pattern having a size of several tens of microns. Therefore, it is found that the thickness uniformity can be improved by reducing the current density to supply sufficient copper ions to the target area.

Simultaneous feeding of calcium butyrate and tannin extract decreased the incidence of diarrhea and proinflammatory markers in weaned piglets

  • Maito, Camila Demarco;Melo, Antonio Diego Brandao;de Oliveira, Angela Cristina da Fonseca;Genova, Jansller Luiz;Filho, Jair Rodini Engracia;de Macedo, Renata Ernlund Freitas;Monteiro, Kelly Mazutti;Weber, Saulo Henrique;Koppenol, Astrid;Costa, Leandro Batista
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.87-95
    • /
    • 2022
  • Objective: This study was conducted to investigate the effect of associating calcium butyrate with tannin extract, compared to an antimicrobial on the growth performance, incidence of diarrhea, intestinal histology, immune-expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor α (TNF-α) in piglets. Methods: Seventy-two piglets (36 barrows and 36 gilts) weaned at 28±2 d and initial body weight of 7.17±1.07 kg were allocated to 3 treatments in a randomized complete block design with 8 replicates per treatment and 3 animals per experimental unit. Treatments were composed of NC, negative control: basal diet without additives; PC, positive control: basal diet + 40 mg/kg of colistin sulfate; or BT, basal diet + calcium butyrate + tannin extract. The butyrate and tannin inclusion levels were 0.15% in the pre-starter phase and 0.075% in the starter phase. Incidence of diarrhea was monitored daily, and on d 14 and 35 of experiment, 1 animal from each experimental unit was slaughtered to collect intestinal samples. Results: No significant differences were observed for growth performance. The butyrate-and tannin-based additive resulted in reduced (p<0.05) incidence of diarrhea in piglets during d 1 to 14 and d 1 to 35 in comparison with the other treatments. Piglets that consumed the diet containing the calcium-butyrate and tannin showed a lower (p<0.05) crypt depth in the duodenum than those receiving the NC treatment at 14 d of experimentation. The BT treatment provided a lower (p<0.05) immune-expression of COX-2 at 14 d and TNF-α at 35 d in the duodenum. Conclusion: Association between calcium butyrate and tannin extract resulted in a significant decrease in the incidence of diarrhea and inflammatory process in the duodenum of piglets. Therefore, calcium-butyrate combined with tannin could be a part of an alternative program to reduce the use of antimicrobials in the diet of weaned piglets.

Effect of crude fibre additives ARBOCEL and VITACEL on the physicochemical properties of granulated feed mixtures for broiler chickens

  • Jakub Urban;Monika Michalczuk;Martyna Batorska;Agata Marzec;Adriana Jaroszek;Damian Bien
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.274-283
    • /
    • 2024
  • Objective: The aim of the study was to evaluate the physicochemical properties (nutrient composition, pH, water content and activity, sorption properties) and mechanical properties (compression force and energy) of granulated feed mixtures with various inclusion levels of crude fibre concentrates ARBOCEL and VITACEL for broiler chickens, i.e. +0.0% (control group - group C), +0.3%, +0.8%, +1.0%, +1.2%. Methods: The feed mixtures were analyzed for their physicochemical properties (nutrient composition by near-infrared spectroscopy, pH with the use a CP-401 pH meter with an IJ-44C glass electrode, water content was determined with the drying method and activity was determined with the Aqua Lab Series 3, sorption properties was determined with the static method) and mechanical properties (compression force and energy with the use TA-HD plus texture analyzer). The Guggenheim-Anderson-de Boer (GAB) model applied in the study correctly described the sorption properties of the analyzed feed mixtures in terms of water activity. Results: The fibre concentrate type affected the specific surface area of the adsorbent and equilibrium water content in the GAB monolayer (p≤0.05) (significantly statistical). The type and dose of the fibre concentrate influenced the dimensionless C and k parameters of the GAB model related to the properties of the monolayer and multilayers, respectively (p≤0.05). They also affected the pH value of the analyzed feed mixtures (p≤0.05). In addition, crude fibre type influenced water activity (p≤0.05) as well as compression energy (J) and compression force (N) (p≤0.001) (highly significantly statistical) of the feed mixtures. Conclusion: The physicochemical analyses of feed mixtures with various inclusion levels (0.3%, 0.8%, 1.0%, 1.2%) of crude fiber concentrates ARBOCEL or VITACEL demonstrated that both crude fiber types may be used in the feed industry as a feedstuff material to produce starter type mixtures for broiler chickens.