• Title/Summary/Keyword: PROCESS ADDITIVES

Search Result 511, Processing Time 0.027 seconds

The Effects of Levelers on Electrodeposition of Copper in TSV Filling (TSV 필링 공정에서 평활제가 구리 비아필링에 미치는 영향 연구)

  • Jung, Myung-Won;Kim, Ki-Tae;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.55-59
    • /
    • 2012
  • Defects such as voids or seams are frequently found in TSV via filling process. To achieve defect-free copper via filling, organic additives such as suppressor, accelerator and leveler were necessary in a copper plating bath. However, by-products stemming from the breakdown of these organic additives reduce the lifetime of the devices and plating solutions. In this research, the effects of levelers on copper electrodeposition were investigated without suppressor and accelerator to lower the concentration of additives. Threelevelers(janus green B, methylene violet, diazine black) were investigated to study the effects of levelers on copper deposition. Electrochemical behaviors of these levelers were different in terms of deposition rate. Filling performances were analyzed by cross sectional images and its characteristics were different with variations of levelers.

Influence of Incorporated Impurities on the Evolution of Microstructure in Electro-Deposited Copper Layer (혼입불순물이 구리 도금층의 미세조직변화에 미치는 영향)

  • Koo, Seok-Bon;Jeon, Jun-Mi;Lee, Chang-Myeon;Hur, Jin-Young;Lee, Hong-Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.191-196
    • /
    • 2018
  • The self-annealing which leads evolution of microstructure in copper electroplating layers at room temperature occurs after forming deposition layer. During the process, crystal orientation, size and sheet resistance of plating layer change. Lastly, it causes the change of physical and mechanical characteristics such as a tensile strength of plating layer. In this study, the variation of incorporated impurities, microstructure and sheet resistance of copper plating layer formed by electroplating are measured with and without inorganic additives during the self-annealing. In case of absence of inorganic additives, the copper layer presents strong total intensity of incorporated impurities. During the self-annealing, such width of reduction was significant. Moreover, microstructure and crystal size are increased while the tensile strength is decreased noticeably. On the other hand, in the presence of inorganic additives, there is no observable distinction in the copper plating layer. According to the observation on movements of the incorporated impurities in electrodeposition copper layer, within 12 hours the impurities are continuously shifted from inside of the plating layer to its surface after as-deposited electroplating. Within 24 hours, except for the small portion of surface layer, it is considered that most of the microstructure is transformed.

Microstructure Control and Upconversion Emission Improvement of Y2O3:Ho3+/Yb3+ Particles Prepared by Spray Pyrolysis

  • Bae, Chaehwan;Jung, Kyeong Youl
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.450-457
    • /
    • 2021
  • Upconversion (UC) properties of Y2O3:Ho3+/Yb3+ spherical particles synthesized by spray pyrolysis were investigated by changing the dopant concentration and calcination temperature. Citric acid (CA), ethylene glycol (EG) and N, N-dimethylformamide (DMF) were used to control the microstructure of Y2O3:Ho3+/Yb3+ particles. In terms of achieving the highest UC green emission intensity, the optimal concentrations of Ho3+ and Yb3+ were found to be 0.3% and 3.0%, respectively. In addition, the UC intensity of Y2O3:Ho3+/Yb3+ showed a linear relationship with the crystallite size. The use of organic additives allows Y2O3:Ho3+/Yb3+ particles to have a spherical and dense structure, resulting in significantly reducing the surface area while maintaining high crystallinity. As a result, the UC emission intensity of Y2O3:Ho3+/Yb3+ particles having a dense structure showed the UC emission intensity about 3.8 times higher than that of hollow particles prepared without organic additives. From those results, when Y2O3:Ho3+/Yb3+ particles are prepared by the spray pyrolysis process, the use of the CA/EG/DMF mixtures as organic additives has been suggested as an effective way to substantially increase the UC emission intensity.

Efficiency Evaluation of Transition Metal-Based Additives for Efficient Thermochemical Conversion of Coffee Waste (커피찌꺼기의 효율적인 열화학 전환을 위한 전이 금속 기반 첨가제 효율 평가)

  • Cho, Dong-Wan;Jang, Jeong-Yun;Kim, Sunjoon;Yim, Gil-Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2022
  • This work examined the effect of mixing transition metal-based additives [FeCl3, Fe-containing paper mill sludge (PMS), CoCl2·H2O, ZrO2, and α-Fe2O3] on the thermochemical conversion of coffee waste (CW) in carbon dioxide-assisted pyrolysis process. Compared to the generation amounts of syngas (0.7 mole% H2 & 3.0 mole% CO) at 700℃ from single pyrolysis of CW, co-pyrolysis in the presence of Fe- or Zr-based additives resulted in the enhanced production of syngas, with the measured concentrations of H2 and CO ranging 1.1-3.4 mole% and 4.6-13.2 mole% at the same temperature, respectively. In addition, α-Fe2O3 biochar possessed the adsorption capacity of As(V) (19.3 mg g-1) comparable to that of ZrO2-biochar (21.2 mg g-1). In conclusion, solid-type Fe-based additive can be highly considered as an efficient catalyst to simultaneously produce syngas (H2 & CO) as fuel energy resource and metal-biochar as sorbent.

A Study on Wet Process of $H_2S$ removal with MDEA (MDEA를 이용한 $H_2S$의 습식탈황 고찰)

  • Han, Keun-Hee;Jo, A-Ra;Lee, Jong-Seup;Min, Byoung-Moo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.238-241
    • /
    • 2008
  • In this study, absorption behaviors of absorbents and additives were measured for removing of $H_2S$ and COS from syn-gas in IGCC process, such as MDEA and HMDA. The experimental variables were concentration of absorbents and reaction temperature. From these experiments, the loading ratios of $H_2S$ were decreased with increasing of concentration of absorbents and absorption temperatures. These results will be applied to basic data for designing of $H_2S$ removal process in IGCC.

  • PDF

MOD-processed YBCO thin films prepared by chemically controlled precursor solution (화학적으로 제어된 전구체용액을 사용하여 MOD법으로 제조된 YBCO 박막)

  • 유재무;김영국;고재웅;허순영;홍계원;이희균;김철진;정경원
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.27-29
    • /
    • 2003
  • Solution-based MOD-TFA deposition technology of YBCO layers offers a route to low-cost YBCO coated conductors. Since the structures and properties of grown thin film by MOD process are strongly influenced by chemistry of precursor solution, the chemical modification of precursor solution for MOD process are important for improvement of the electrical properties of YBCO films. In this study, the precursor solution for MOD process are modified by chemical additives and solvents. The microstructure and texture of YBCO films grown by chemically modified precursor solution were characterized with SEM/EDS, XRD.

  • PDF

Enhanced Machinability of Sinter-hardenable PM Steels

  • Lindsley, Bruce;Schade, Chris;Fillari, George
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.299-300
    • /
    • 2006
  • Machining of sinter-hardened PM steels provides a challenge for part makers. To facilitate machining of these materials, a new additive (MA) has been developed to increase tool life during the machining process. Hard turning tests were performed to evaluate the effect of this new additive. Sintered compacts with the MA additive were compared to compacts without a machining aid and to compacts that contained the MnS additive. This paper discusses the improvement in machinability with this new additive in sinter-hardenable PM steels.

  • PDF

A Study on the Accumulation Phenomena of Oxidized Starch in White Water of closed Fine Papermaking Process (Part 2) -Effect of broke use ratio and surface sizing pick up- (백상지 공정 폐쇄화에 따른 백수 내 산화전분의 축적 현상에 관한 연구 (제2보) -파지혼합비율 및 표면사이징 픽업량 변화의 영향-)

  • Ahn, Hyun-Kyun;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.3
    • /
    • pp.35-43
    • /
    • 2004
  • Reduction of fresh water consumption and effluent discharge provide diverse advantages in raw materials and energy savings. Papermaking system closure, however, reduces the efficiency of additives, decreases retention and dewatering, and causes many other Problems in papermaking. Accumulation of inorganic and organic substances in the process white water is the prime cause of these problems. Understanding of the accumulation phenomena of the detrimental substances in the papermaking process is of great importance for papermaking system closure. In this study a process simulation method was employed to analyze the accumulation phenomena of anionic starch in the process white water as the reuse rate of dry broke and pick up of surface sizing agent is increased. Steady state simulation studies were carried out based on the model developed in previous study. The variation of dissolved starch concentration in each process unit was monitored as a function of reuse rate of dry broke and surface sizing agent pick up rate. The result showed that dissolved starch concentration Increased as reuse rate of dry broke and surface sizing agent pick up rate was increased.

Application of Cationic PVAm - Anionic PAM Dry Strength Aids System on a Kraft Paper Mill (양이온성 PVAm - 음이온성 PAM 건조지력증강제 시스템의 크라프트지 적용 사례)

  • Cho, Byoung-Uk;Ryu, Jeong-Yong;Son, Dong-Jin;Song, Bong-Keun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.3
    • /
    • pp.50-57
    • /
    • 2010
  • A mill trial was performed in a kraft paper mill in order to evaluate the possibility of utilizing dual polymer dry strength aids system consisting of cationic PVAm and anionic PAM. It was found that the cationic PVAm - anionic PAM dry strength additives can improve paper strength without significantly disturbing the stability of the kraft papermaking process when virgin UKP was used as a furnish. Tensile strength (25.3% in machine direction, 48.4% in cross machine direction), elongation of paper (31.6%, 15.6%) and tensile energy absorption (48%, 54%) were improved. Air permeability of the kraft paper was improved as well (22%). Tear strength was decreased with PVAm dry strength aids system, but it can be compensated with decreasing refining degree. In addition, the mill trial results indicate that highly air permeable kraft sack paper can be produced by the addition of PVAm dry strength agents at the stock with reduced freeness.