• Title/Summary/Keyword: PRAM(Phase change random access memory)

Search Result 46, Processing Time 0.042 seconds

Electrical and thermal characteristics of PRAM with thickness of phase change thin film (상변화 박막의 두께에 따른 상변화 메모리의 전류 및 열 특성)

  • Choi, Hong-Kyw;Kim, Hong-Seung;Lee, Seong-Hwan;Jang, Nak-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.162-168
    • /
    • 2008
  • In this paper, we analyzed the heat transfer phenomenon and the reset current variation of PRAM device with thickness of phase change material using the 3-D finite element analysis tool. From the simulation, Joule's heat was generated at the contact surface of phase change material and bottom electrode of PRAM. As the thickness of phase change material was decreased, the reset current was highly increased. In case thickness of phase change material thin film was $200\;{\AA}$, heat increased through top electrode and reset current caused by phase transition highly increased. And as thermal conductivity of top electrode decreased, temperature of unit memory cell was increased.

The Electrical and Thermal Properties of Phase Change Memory Cell with Bottom Electrode (하부전극에 따른 상변화 메모리 셀의 전기 및 발열 특성)

  • Jang, Nak-Won;Kim, Hong-Seung;Lee, June-Key;Kim, Do-Heyoung;Mah, Suk-Bum
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.103-104
    • /
    • 2006
  • PRAM (Phase change Random Access Memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change material has been researched in the field of optical data storage media. However, the characteristics required in solid state memory are quite different from optical ones. In this study, the reset current and temperature profile of PRAM cells with bottom electrode were calculated by the numerical method.

  • PDF

X-ray Photoelectron Spectroscopic Study of $Ge_{2}Sb_{2}Te_{5}$ and Its Etch Characteristics in Fluorine Based Plasmas

  • Jeon, Min-Hwan;Gang, Se-Gu;Park, Jong-Yun;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.110-110
    • /
    • 2009
  • 최근 차세대 비휘발성 메모리(NVM) 기술은 메모리의 성능과 기존의 한계점을 효과적으로 극복하며 활발한 연구를 통해 비약적으로 발전하고 있으며 특히, phase-change random access memory (PRAM)은 ferroelectric random access memory (FeRAM)과 magneto-resistive random access memory (MRAM)과 같은 다른 NVM 소자와 비교하여 기존의 DRAM과 구조적으로 비슷하고 상용화가 빠르게 진행될 수 있을 것으로 예상되는 바, PRAM에 사용되는 상변화 물질의 식각을 수행하고 X-ray photoelectron spectroscopy (XPS)를 통해 표면의 열화현상을 관찰하였다.

  • PDF

Electromagnetic and Thermal Analysis of PRAM cell with phase change material (상변화 재료의 물질상수에 따른 PRAM cell의 전자장 및 열 해석)

  • Jang, Nak-Won;Kim, Hong-Seung;Lee, Seong-Hwan;Mah, Suk-Bum
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.144-145
    • /
    • 2007
  • Phase change random access memory is one of the most promising candidates for next generation non-volatile memories. However, the high reset current is one major obstacle to develop a high density PRAM. One way of the reset current reduction is to develop the new phase change material. In this paper, to reduce the reset current for phase transition, we have investigated the effect of phase change material parameters using finite element analysis.

  • PDF

Thermal characteristic of PRAM with top electrode (상부전극에 따른 상변화 메모리의 발열 특성)

  • Choi, Hong-Kyw;Jang, Nak-Won;Kim, Hong-Seung;Lee, Seong-Hwan;Mah, Suk-Bum
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.97-98
    • /
    • 2007
  • In this paper, we analyzed the reset current variation of PRAM device with top electrode using the 3-D finite element analysis tool. As thickness of phase change material thin film decreased, reset current caused by phase transition highly increased. Joule's heat which was generated at the contact surface of phase change material and bottom electrode of PRAM was given off through top electrode to which was transferred phase change material. As thermal conductivity of top electrode decreased, heating temperate was increased.

  • PDF

Reduced contact size in $Ge_1Se_1Te_2$ for phase change random access memory (PRAM에서 $Ge_1Se_1Te_2$와 전극의 접촉 면적을 줄이는 방법에 대한 효과)

  • Lim, Dong-Kyu;Kim, Jae-Hoon;Na, Min-Seok;Choi, Hyuk;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.154-155
    • /
    • 2007
  • PRAM(Phase-Change RAM) is a promising memory that can solve the problem of conventional memory and has the nearly ideal memory characteristics. We reviewed the issues for high density PRAM integration. Writing current reduction is the most urgent problem for high density PRAM realization. So, we studied new constitution of $Ge_1Se_1Te_2$ chalcogenide material and presented the method of reducing the contact size between $Ge_1Se_1Te_2$ and electrode. A small-contact-area electrode is used primarily to supply current into and minimize heat loss from the chalcogenide. In this letter, we expect the method of reducing the contact size between $Ge_1Se_1Te_2$ and electrode to decrease writing current.

  • PDF

Evaluation of Phase Transition Behavior of Ge2Sb2Te5 Thin Film for Phase Change Random Access Memory (상변환 메모리의 응용을 위한 Ge2Sb2Te5 박막의 상변환 거동 평가)

  • Do, Woo-Hyuk;Kim, Sung-Soon;Bae, Jun-Hyun;Cha, Jun-Ho;Kim, Kyung-Ho;Lee, Young-Kook;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.18-22
    • /
    • 2007
  • The phase transition behavior of $Ge_2Sb_2Te_5$ (GST) thin film, which is a candidate material of recording layer for phase change random access memory (PRAM), has been evaluated using an in-situ reflectance measurement method. The experimental data have been analyzed by using johnson-mehl-avrami-kolomogorov (JMAK) model. JMAK model can be used only in isothermal state. However, temperature changes with time during the operation of PRAM. To apply JMAK equation to PRAM simulation, it has been assumed that the temperature increases stepwise and isothermally. By using JMAK equation and assumption for the transient state, the phase transition behavior of GST thin film has been predicted under $3^{\circ}C/min$ heating rate in this study. The simulation result agrees well with the experimental results. Therefore, It can be concluded that JMAK equation can be used far the PRAM simulation model.

Properties of GST Thin Films for PRAM with Composition (PRAM용 GST계 박막의 조성에 따른 특성)

  • Jung, Myung-Hun;Jang, Nak-Won;Kim, Hong-Seung;Ryu, Sang-Ouk;Lee, Nam-Teal;Yoon, Sung-Min;Park, Young-Sam;Lee, Seung-Yun;Yu, Byoung-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.203-204
    • /
    • 2005
  • PRAM (Phase change Random Access Memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change material has been researched in the field of optical data storage media. Among the phase change materials $Ge_2Sb_2Te_5$(GST) is very well known for its high optical contrast in the state of amorphous and crystalline. However, the characteristics required in solid state memory are quite different from optical ones. In this study, the structural properties of GST thin films with composition were investigated for PRAM. The 100-nm thick GeTe and $Sb_2Te_3$ films were deposited on $SiO_2$/Si substrates by RF sputtering system. In order to characterize the crystal structure and morphology of these films, we performed x-ray diffraction (XRD) and atomic force microscopy (AFM).

  • PDF

Phase-Change Properties of annealed $Ge_1Se_1Te_2$ thin film with Sb doping for Application of Phase-Change Random Access Memory (상변화 메모리 응용을 위한 Sb을 첨가한 $Ge_1Se_1Te_2$ 박막의 열처리 후 상변화 특성)

  • Kim, Hyun-Koo;Choi, Hyuck;Nam, Ki-Hyeon;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.106-107
    • /
    • 2007
  • A detailed investigation of cell structure and electrical characteristic in chalcogenide-based phase-change random access memory(PRAM) devices is presented. We used compound of Ge-Se-Te material for phase-change cell. Actually, the performance properties have been improved surprisingly then conventional Ge-Sb-Te. However, crystallization time was as long as ever for amorphization time. We conducted this experiment in order to solve that problem by doping-Sb with annealing.

  • PDF

Widely Tunable Adaptive Resolution-controlled Read-sensing Reference Current Generation for Reliable PRAM Data Read at Scaled Technologies

  • Park, Mu-hui;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.363-369
    • /
    • 2017
  • Phase-change random access memory (PRAM) has been emerged as a potential memory due to its excellent scalability, non-volatility, and random accessibility. But, as the cell current is reducing due to cell size scaling, the read-sensing window margin is also decreasing due to increased variation of cell performance distribution, resulting in a substantial loss of yield. To cope with this problem, a novel adaptive read-sensing reference current generation scheme is proposed, whose trimming range and resolution are adaptively controlled depending on process conditions. Performance evaluation in a 58-nm CMOS process indicated that the proposed read-sensing reference current scheme allowed the integral nonlinearity (INL) to be improved from 10.3 LSB to 2.14 LSB (79% reduction), and the differential nonlinearity (DNL) from 2.29 LSB to 0.94 LSB (59% reduction).