• 제목/요약/키워드: PR-genes

검색결과 110건 처리시간 0.026초

Induction of Drought Stress Resistance by Multi-Functional PGPR Bacillus licheniformis K11 in Pepper

  • Lim, Jong-Hui;Kim, Sang-Dal
    • The Plant Pathology Journal
    • /
    • 제29권2호
    • /
    • pp.201-208
    • /
    • 2013
  • Drought stress is one of the major yield affecting factor for pepper plant. The effects of PGPRs were analyzed in relation with drought resistance. The PGPRs inoculated pepper plants tolerate the drought stress and survived as compared to non-inoculated pepper plants that died after 15 days of drought stress. Variations in protein and RNA accumulation patterns of inoculated and non-inoculated pepper plants subjected to drought conditions for 10 days were confirmed by two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and differential display PCR (DD-PCR), respectively. A total of six differentially expressed stress proteins were identified in the treated pepper plants by 2D-PAGE. Among the stress proteins, specific genes of Cadhn, VA, sHSP and CaPR-10 showed more than a 1.5-fold expressed in amount in B. licheniformis K11-treated drought pepper compared to untreated drought pepper. The changes in proteins and gene expression patterns were attributed to the B. licheniformis K11. Accordingly, auxin and ACC deaminase producing PGPR B. licheniformis K11 could reduce drought stress in drought affected regions without the need for overusing agrochemicals and chemical fertilizer. These results will contribute to the development of a microbial agent for organic farming by PGPR.

Salicylic Acid and Wounding Induce Defense-Related Proteins in Chinese Cabbage

  • Kim, Hong-Nam;Cha, Jae-Soon;Cho, Tae-Ju;Kim, Hak-Yong
    • Animal cells and systems
    • /
    • 제7권3호
    • /
    • pp.213-219
    • /
    • 2003
  • The response of plants to pathogens and wounding is dependent upon very sensitive perception mechanisms. Although genetic approaches have revealed a variety of resistance genes that activate common defense responses, defense-related proteins are not well characterized in plants. Therefore, we used a proteomic approach to determine which defense-related proteins are induced by salicylic acid (SA) and wounding in Chinese cabbage. We found that SA and wounding induce pathogenesis-related protein 1a (PR1a) at both protein and mRNA levels using proteomics and Northern blot analysis, respectively. This indicates that our proteomic approach is useful for identifying defense-related proteins. We also identified several other proteins that are induced by SA or wounding. Among the seven SA-induced proteins identified, four may be defense-related, including defense-related protein, phospholipase D (PLD), resistance protein RPS2 homolog, and L-ascorbate peroxidase. Out of the six wounding-induced proteins identified, three may be defense-related: heat shock cognate protein 70 (HSC70), polygalacturonase, and peroxidase P7. The precise functions of these proteins in plant defense responses await further study. However, identification of the defense-related proteins described in this study should allow us to better understand the mechanisms and signal transduction pathways involved in defense responses in Chinese cabbage.

Effects of Dyglomera® on leptin expression, pro-inflammatory cytokines, and adipocyte browning in 3T3-L1 cells

  • Da-Eun Min;Sung-Kwon Lee;Hae Jin Lee;Bong-Keun Choi;Dong-Ryung Lee
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.186-196
    • /
    • 2023
  • Dyglomera® is an aqueous ethanol extract derived from the fruit and pods of Dichrostachys glomerata. A previous study has revealed that Dyglomera regulates adipogenesis and lipolysis by modulating AMP-activated protein kinase (AMPK) phosphorylation and increased expression levels of lipolysis-related proteins in white adipose tissue of high fat diet-induced mice and 3T3-L1 adipocyte cells. To further investigate mechanisms of Dyglomera, additional studies were performed using 3T3-L1 cells. Results revealed that Dyglomera downregulated adipogenesis by inhibiting the protein kinase B/mammalian target of rapamycin signaling pathway and reconfirmed that it downregulated gene expression levels of proliferator-activated receptor (PPAR)-γ, CCAAT enhancer binding protein α, sterol-regulation element-binding protein-1c. Dyglomera also reduced adipokines such as tumor necrosis factor alpha, interleukin-1β, and interleukin 6 by regulating leptin expression. Moreover, Dyglomera promoted beige-and-brown adipocyte-related phenotypes and regulated metabolism by increasing mitochondrial number and expression levels of genes such as T-box protein 1, transmembrane protein 26, PR domain 16, and cluster of differentiation 40 as well as thermogenic factors such as uncoupling protein 1, proliferator-activated receptor-gamma co-activator-1α, Sirtuin 1, and PPARα through AMPK activation. Thus, Dyglomera not only can inhibit adipogenesis, but also can promote lipolysis and thermogenesis and regulate metabolism by affecting adipokine secretion from 3T3-L1 adipocytes.

Trichoderma asperellum T-5를 이용한 오이 모잘록병(Rhizoctonia solani)의 생물학적 제어 (Biocontrol of Damping-Off(Rhizoctonia solani) in Cucumber by Trichoderma asperellum T-5)

  • 류지연;김영덕;김용웅;이향범;김길용
    • 한국토양비료학회지
    • /
    • 제39권4호
    • /
    • pp.185-194
    • /
    • 2006
  • 몇 년동안 게껍질이 풍부하게 있었던 밭토양에서 강한 키틴분해능력을 가진 Trichoderma 곰팡이를 분리하였다. 분리된 곰팡이의 5.8S rRNA, partial 18S, 28S rRNA genes, ITS1, ITS2 sequence 분석과 형태학적 특징을 살펴본 결과 Trichoderma asperellum으로 동정되었고, 이를 Trichoderma asperellum T-5 (TaT-5)로 명명하였다. 이 곰팡이는 chitianse와 ${\beta}$-1,3-glucanase같은 lytic enzyme을 분비하며, 키틴배지 상에서 6가지의 항 곰팡이성 물질을 생산했다. R. solani가 원인인 오이의 모잘록병에 대해 TaT 5의 방제효과를 보기 위해서 TaT-5 배양액(TA), chitin medium(CM), 증류수(DW)를 씨를 심은 후 10일 째에 각 pot에 관주했다. 그리고 관주 1주일 후에 R. solani의 균사를 갈아서 각 pot에 주었다. 실험기간 동안에 오이의 지상부와 지하부 생체중은 다른 처리구에 비하여 TA 처리구가 더 많이 증가하였다. 오이 잎에서 PR-protein (chitianse, ${\beta}$-1,3-glucanase) 활성은 R. solani 감염 후 CM과 DW에서 증가를 보였고, TA 처리구에서는 증가하다가 감소하는 경향을 보였다. 뿌리에서는 모든 처리구가 감소하는 경향을 보였지만 TA 처리구가 CM과 DW 처리구보다 감소하는 정도가 적었다. 오이의 잎과 뿌리에서 lignification related enzyme(POD, PPO, PAL)활성은 R. solani 감염 초기에는 증가하다가 점점 감소하는 경향을 보였다. 이러한 결과들은 TaT-5에 의하여 생산된 lytic enzymes와 항 곰팡이성 물질들이 오이에 R. solani의 공격을 줄여준다고 생각된다.

배 검은별무늬병 감염과 저항성 방어반응 연관 전사체 프로파일 (Transcriptomic Profile in Pear Leave with Resistance Against Venturia nashicola Infection)

  • 신일섭;천재안;김세희;조강희;원경호;정해원;김금선
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.36-36
    • /
    • 2022
  • The molecular understanding of resistance and susceptibility of host plants to scab, a most threatful disease to pome fruit production worldwide, is very limited. Comparing resistant line '93-3-98' to susceptible one 'Sweet Skin' at seven time points of 0, 0.5, 1, 2, 3, 4, 8 days post inoculation, RNA-sequencing data derived from infected and mock-inoculated young leaves were analyzed to evaluate the tolerant response and to mine candidate genes of pear to the scab pathogen Venturia nashicola. Analysis of the mapped reads showed that the infection of V. nashicola led to significant differential expression of 17,827 transcripts with more than 3-fold change in the seven pairs of libraries, of which 9,672 (54%) are up- and 8,155(46%) are down-regulated. These included mainly receptor (NB-ARC domains-containing, CC-NBS-LRR, TIR-NBS-LRR, seven transmembrane MLO family protein) and transcription factor (ethylene responsive element binding, WRKY DNA-binding protein) related gene. An arsenal of defense response of highly resistant pear accessions derived from European pear was probably supposed no sooner had V. nashicola infected its host than host genes related to disease suppression like Polyketide cyclase/dehydrase and lipid transport protein, WRKY family transcription factor, lectin protein kinase, cystein-rich RLK, calcium-dependent phospholipid-binding copine protein were greatly boosted and eradicated cascade reaction induced by pathogen within 24 hours. To identify transcripts specifically expressed in response to V. nashicola, RT-PCRs were conducted and compare to the expression patterns of seven cultivars with a range of highly resistant to highly susceptible symptom. A DEG belonging to the PR protein family genes that were higher expressed in response to V. nashicola suggesting extraordinary role in the resistance response were led to the identification. This study provides the first transcriptional profile by RNA-seq of the host plant during scab disease and insights into the response of tolerant pear plants to V. nashicola.

  • PDF

Menadione Sodium Bisulfite-Protected Tomato Leaves against Grey Mould via Antifungal Activity and Enhanced Plant Immunity

  • Jo, Youn Sook;Park, Hye Bin;Kim, Ji Yun;Choi, Seong Min;Lee, Da Sol;Kim, Do Hoon;Lee, Young Hee;Park, Chang-Jin;Jeun, Yong-Chull;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • 제36권4호
    • /
    • pp.335-345
    • /
    • 2020
  • Tomato grey mould has been one of the destructive fungal diseases during tomato production. Ten mM of menadione sodium bisulfite (MSB) was applied to tomato plants for eco-friendly control of the grey mould. MSB-reduced tomato grey mould in the 3rd true leaves was prolonged at least 7 days prior to the fungal inoculation of two inoculum densities (2 × 104 and 2 × 105 conidia/ml) of Botrytis cinerea. Protection efficacy was significantly higher in the leaves inoculated with the lower disease pressure of conidial suspension compared to the higher one. MSB-pretreatment was not effective to arrest oxalic acid-triggered necrosis on tomato leaves. Plant cell death and hydrogen peroxide accumulation were restricted in necrotic lesions of the B. cinereainoculated leaves by the MSB-pretreatment. Decreased conidia number and germ-tube elongation of B. cinerea were found at 10 h, and mycelial growth was also impeded at 24 h on the MSB-pretreated leaves. MSB-mediated disease suppressions were found in cotyledons and different positions (1st to 5th) of true leaves inoculated with the lower conidial suspension, but only 1st to 3rd true leaves showed decreases in lesion sizes by the higher inoculum density. Increasing MSB-pretreatment times more efficiently decreased the lesion size by the higher disease pressure. MSB led to inducible expressions of defence-related genes SlPR1a, SlPR1b, SlPIN2, SlACO1, SlChi3, and SlChi9 in tomato leaves prior to B. cinerea infection. These results suggest that MSB pretreatment can be a promising alternative to chemical fungicides for environment-friendly management of tomato grey mould.

Combined Effect of CO2 andTemperature on Wheat Powdery Mildew Development

  • Matic, Slavica;Cucu, Maria Alexandra;Garibaldi, Angelo;Gullino, Maria Lodovica
    • The Plant Pathology Journal
    • /
    • 제34권4호
    • /
    • pp.316-326
    • /
    • 2018
  • The effect of simulated climate changes by applying different temperatures and $CO_2$ levels was investigated in the Blumeria graminis f. sp. tritici/wheat pathosystem. Healthy and inoculated plants were exposed in single phytotrons to six $CO_2$+temperature combinations: (1) 450 ppm $CO_2/18-22^{\circ}C$ (ambient $CO_2$ and low temperature), (2) 850 ppm $CO_2/18-22^{\circ}C$ (elevated $CO_2$ and low temperature), (3) 450 ppm $CO_2/22-26^{\circ}C$ (ambient $CO_2$ and medium temperature), (4) 850 ppm $CO_2/22-26^{\circ}C$ (elevated $CO_2$ and medium temperature), (5) 450 ppm $CO_2/26-30^{\circ}C$ (ambient $CO_2$ and high temperature), and (6) 850 ppm $CO_2/26-30^{\circ}C$ (elevated $CO_2$ and high temperature). Powdery mildew disease index, fungal DNA quantity, plant death incidence, plant expression of pathogenesis-related (PR) genes, plant growth parameters, carbohydrate and chlorophyll content were evaluated. Both $CO_2$ and temperature, and their interaction significantly influenced powdery mildew development. The most advantageous conditions for the progress of powdery mildew on wheat were low temperature and ambient $CO_2$. High temperatures inhibited pathogen growth independent of $CO_2$ conditions, and no typical powdery mildew symptoms were observed. Elevated $CO_2$ did not stimulate powdery mildew development, but was detrimental for plant vitality. Similar abundance of three PR transcripts was found, and the level of their expression was different between six phytotron conditions. Real time PCR quantification of Bgt was in line with the disease index results, but this technique succeeded to detect the pathogen also in asymptomatic plants. Overall, future global warming scenarios may limit the development of powdery mildew on wheat in Mediterranean area, unless the pathogen will adapt to higher temperatures.

자궁근종세포의 최적 초기배양 조건 확립 - 정상 자궁근세포와 자궁근종세포의 스테로이드에 대한 반응 (Development of a Primary Tissue Culture Method having Greater Reliability than Isolated Cell Cultures - Steroid-Responsiveness of Uterine Myometrial and Myomatous(Leiomyomatous) Cells)

  • 이은주;프라티 바즈라촤리여;현진희;김항진;송건호;조경현;이동목;이택후;전상식;최인호
    • 한국발생생물학회지:발생과생식
    • /
    • 제11권3호
    • /
    • pp.205-217
    • /
    • 2007
  • 본 연구는 자궁근종 성장에 관한 분자생물학적인 기전의 이해를 위해 자궁근종 및 정상 자궁근세포의 초기 배양방법을 확립하기 위해 실시하였다. 이를 위해 최종적으로 두 가지 세포 배양 방법이 확립되었다. 그리고 안정적으로 연구(특히, 여성호르몬에 대한 반응 연구)에 사용할 수 있는 가장 적합한 세포 배양 방법이 모색되었다. 두 가지 세포 배양 조건 중 두 번째 방법(method 2)이 안정적으로 세포의 반응을 연구하는데 더 나은 방법으로 결론 내려졌고, 여성호르몬에 대한 반응이 더 좋은 것으로 밝혀졌다. 이 방법을 통해 배양된 세포에 $E_2$를 처리했을 때 정상 자궁근세포에 비해 근종세포에서 PR, IGF-1 and IGF-1 receptor mRNA의 발현이 더 높은 것으로 나타났다. 더욱이 주변에 있는 세포들보다는 조직에서 좀 더 큰 반응을 보였으며, 이는 $E_2$에 대한 세포의 반응에 세포외기질(extracellular matrix)과 세포 사이의 상호작용이 필요하다는 것을 의미한다. 결론적으로 이러한 근종세포 및 조직의 초기 배양 방법은 in vitro 상에서 종양 발생에 대한 기초연구를 위해 유용하게 사용될 수 있을 것으로 사료된다.

  • PDF

PGPR균 EXTN-1 처리에 의한 벼의 생육촉진 및 벼줄무늬잎마름병(RSV)에 대한 유도저항성 발현 (Rice Plant Growth Promotion and Induced Systemic Resistance Against Rice strip tenuivirus by a Selected PGPR, Bacillus amyloliquefaciens)

  • 박진우;박경석;이기운
    • 농약과학회지
    • /
    • 제15권4호
    • /
    • pp.485-489
    • /
    • 2011
  • Bacillus amyloliquefaciens strain EXTN-1 처리에 의해 생육촉진 효과와 함께 광범위한 식물 병 방제효과가 보고되었다. EXTN-1의 PGPR 효과는 생육초기에 PR-1a, PDF1.2 등의 저항성 관련 유전자 발현에 의한 oxidative burst의 증가나 SA, JA나 ethylene 대사에 의한 유도저항성의 발현에 기인한다. 이 연구의 목표는 B. amyloliquefaciens EXTN-1가 기존에 보고된 다른 작물의 경우에서와 마찬가지로 벼의 생육촉진이나 벼줄무늬잎마름병에 대한 저항성에 관여하는지를 확인하기 위해 수행되었다. 벼 종자를 B. amyloliquefaciens EXTN-1에 침지한 후 파종하였을 때 생육촉진 효과와 병에 대한 저항성 발현이 확인되었다. B. amyloliquefaciens EXTN-1을 처리한 30일묘에서 벼의 초장, 생물중, 뿌리길이는 무처리구에 비해 각각 12.6%, 9.8%, 16.0% 증가하여 PGPR 효과가 나타남을 확인할 수 있었다. RSV 접종구에서도 B. amyloliquefaciens EXTN-1 20일묘는 초장, 생물중, 뿌리길이는 무처리구에 비해 각각 12.6%, 9.8%, 16.0% 증가하였다. 유도저항성 발현효과는 감수성 품종에서 저항성 품종에서 상대적으로 뚜렷하게 나타났다.

Generation of a High-Growth Influenza Vaccine Strain in MDCK Cells for Vaccine Preparedness

  • Kim, Eun-Ha;Kwon, Hyeok-Il;Park, Su-Jin;Kim, Young-Il;Si, Young-Jae;Lee, In-Won;Kim, Se mi;Kim, Soo-In;Ahn, Dong-Ho;Choi, Young-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.997-1006
    • /
    • 2018
  • As shown during the 2009 pandemic H1N1 (A(H1N1)pdm09) outbreak, egg-based influenza vaccine production technology is insufficient to meet global demands during an influenza pandemic. Therefore, there is a need to adapt cell culture-derived vaccine technology using suspended cell lines for more rapid and larger-scale vaccine production. In this study, we attempted to generate a high-growth influenza vaccine strain in MDCK cells using an A/Puerto/8/1934 (H1N1) vaccine seed strain. Following 48 serial passages with four rounds of virus plaque purification in MDCK cells, we were able to select several MDCK-adapted plaques that could grow over $10^8PFU/ml$. Genetic characterization revealed that these viruses mainly had amino acid substitutions in internal genes and exhibited higher polymerase activities. By using a series of Rg viruses, we demonstrated the essential residues of each gene and identified a set of high-growth strains in MDCK cells ($PB1_{D153N}$, $M1_{A137T}$, and $NS1_{N176S}$). In addition, we confirmed that in the context of the high-growth A/PR/8/34 backbone, A/California/7/2009 (H1N1), A/Perth/16/2009 (H3N2), and A/environment/Korea/deltaW150/2006 (H5N1) also showed significantly enhanced growth properties (more than $10^7PFU/ml$) in both attached- and suspended-MDCK cells compared with each representative virus and the original PR8 vaccine strain. Taken together, this study demonstrates the feasibility of a cell culture-derived approach to produce seed viruses for influenza vaccines that are cheap and can be grown promptly and vigorously as a substitute for egg-based vaccines. Thus, our results suggest that MDCK cell-based vaccine production is a feasible option for producing large-scale vaccines in case of pandemic outbreaks.