• Title/Summary/Keyword: PPAR ${\gamma}$

Search Result 473, Processing Time 0.028 seconds

Protein Tyrosine Phosphatase, Receptor Type B (PTPRB) Inhibits Brown Adipocyte Differentiation through Regulation of VEGFR2 Phosphorylation

  • Kim, Ji Soo;Kim, Won Kon;Oh, Kyoung-Jin;Lee, Eun-Woo;Han, Baek Soo;Lee, Sang Chul;Bae, Kwang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.645-650
    • /
    • 2019
  • Brown adipocytes have an important role in the regulation of energy balance through uncoupling protein-1 (UCP-1)-mediated nonshivering thermogenesis. Although brown adipocytes have been highlighted as a new therapeutic target for the treatment of metabolic diseases, such as obesity and type II diabetes in adult humans, the molecular mechanism underlying brown adipogenesis is not fully understood. We recently found that protein tyrosine phosphatase receptor type B (PTPRB) expression dramatically decreased during brown adipogenic differentiation. In this study, we investigated the functional roles of PTPRB and its regulatory mechanism during brown adipocyte differentiation. Ectopic expression of PTPRB led to a reduced brown adipocyte differentiation by suppressing the tyrosine phosphorylation of VEGFR2, whereas a catalytic inactive PTPRB mutant showed no effects on differentiation and phosphorylation. Consistently, the expression of brown adipocyte-related genes, such as UCP-1, $PGC-1{\alpha}$, PRDM16, $PPAR-{\gamma}$, and CIDEA, were significantly inhibited by PTPRB overexpression. Overall, these results suggest that PTPRB functions as a negative regulator of brown adipocyte differentiation through its phosphatase activity-dependent mechanism and may be used as a target protein for the regulation of obesity and type II diabetes.

Determination of Fat Accumulation Reduction by Edible Fatty Acids and Natural Waxes In Vitro

  • Issara, Utthapon;Park, Suhyun;Park, Sungkwon
    • Food Science of Animal Resources
    • /
    • v.39 no.3
    • /
    • pp.430-445
    • /
    • 2019
  • Natural edible waxes mixed with plant oils, containing high levels of unsaturated fatty acids (FAs), are known as oleogels. Oleogels are used for replacing saturated FAs in animal-derived food with unsaturated FAs. However, the health effects of edible waxes are not yet clearly defined. The purpose of this study was to investigate the effect of FAs and natural waxes on the adipogenesis in 3T3-L1 cells. The 3T3-L1 cells were differentiated and treated with FAs and waxes. These FAs [Palmitic acid (PA), Stearic acid (SA), Oleic acid (OA), Linoleic acid (LA), and Alpha-linolenic acid (ALA)] and waxes [beeswax (BW) and carnauba wax (CW)] were prepared at varying concentrations, and cell toxicity, triglyceride accumulation, lipid droplets size, and distribution inside of cells were determined. Adipogenic gene expression including $PPAR{\gamma}$, FASN, $C/EBP{\alpha}$, SREBP-1, and CPT-1 was determined. Results showed that increasing the concentration of FAs and waxes led to a decrease in the adipocyte cells viability and metabolic performance. SA showed the highest level of triglyceride accumulation (p<0.05), whereas ALA showed the lowest (p<0.05). Both BW and CW at 3.0 ppm showed significantly higher lipid accumulation than in the control and other groups (p<0.05). ALA had significantly downregulated adipogenic gene expression levels, excluding those of CPT-1, compared to the other treatment groups (p<0.05). Moreover, BW demonstrated similar adipogenic gene expression levels as ALA compared to CW. Consequently, ALA and BW may have health benefits by reducing adipogenesis and can be used in processed meat.

Antioxidant activity and improvement effect of Acer tegmentosum Maxim of dietary fatty liver in rat fed on a high-fat diet (벌나무(Acer tegmentosum Maxim) 추출물의 항산화 활성 및 고지방식이를 급이한 흰쥐의 지방간 개선 효과)

  • Lee, Soo-Jung;Cho, Hang Hee;Song, Yuno;Jang, Sun-Hee;Cho, Jae-Hyeon
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.2
    • /
    • pp.43-51
    • /
    • 2019
  • The effects on the radical scavenging activities and hepatic lipid levels in rats fed a high-fat diet (HFD) in the 70% ethanolic extract from Acer tegmentosum Maxim (ATM) were evaluated. Total phenol content of ATM was 168.60 mg catechin/g in the 70% ethanolic extract of Acer tegmentosum. The DPPH and ABTS radical scavenging activities were 18.32 mM TE/g and 32.25 mM TE/g, respectively. Food efficiency ratio was lower significantly in supplemented group with 150 mg/kg BW/day during 5 weeks (HFD+ATM) compared to HFD. Total cholesterol and triglyceride contents in liver tissue of HFD+ATM were lower significantly compared to those of the HFD. Supplementation of ATM significantly decreased lipid peroxide contents and increased radical scavenging activity in the liver tissue compared with that of HFD group. Moreover, the hepatocytes of HFD rats showed a typical fatty liver morphology showing the presence of cytoplasmic lipid droplets, whereas administration of ATM attenuated the number and the size of lipid droplets. In the liver tissue of ATM administrated HFD group, the mRNA levels of SREBP-1c, $PPAR{\gamma}$, and FAS were decreased. Therefore, these results suggest that Acer tegmentosum extracts could have antioxidant activities and the hypolipidemic effects in liver tissue by its phenolic compounds.

Improvement of Lipid Homeostasis Through Modulation of Low-density Lipoprotein Receptor Family by Functional Ingredients (천연 기능성 물질(Functional Ingredients)을 활용한 LDL 수용체과(科) 조절과 지질항상성 개선)

  • Jeong, Jeongho;Ryu, Yungsun;Park, Kibeum;Go, Gwang-woong
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Dyslipidemia, defined as elevated triglyceride (TG), total- and LDL-C, and/or decreased HDL-C levels, is considered a principal risk factor for cardiovascular disease. The low-density lipoprotein receptor (LDLR) family has been considered a key player in the prevention of dyslipidemia. The LDLR family consists of cytoplasmic membrane proteins and plays an important role not only in ligand-receptor binding and uptake, but also in various cell signaling pathways. Emerging reports state that various functional ingredients dynamically modulate the function of the LDLR family. For instance, oats stimulated the LDLR function in vivo, resulting in decreased body weight and improved serum lipid profiles. The stimulation of LRP6 by functional ingredients in vitro activated the Wnt/${\beta}-catenin$ pathway, subsequently suppressing the intracellular TG via inhibition of SREBP1, $PPAR{\gamma}$, and $C/EBP{\alpha}$. Furthermore, the extract of Cistanchetubulosa enhanced the expression of the mRNA of VLDLR, followed by a reduction in the serum cholesterol level. In addition, fermented soy milk diminished TG and total cholesterol levels while increasing HDL-C levels via activation of LRP1. To summarize, modulating the function of the LDLR family by diverse functional ingredients may be a potent therapeutic remedy for the treatment of dyslipidemia and cardiovascular diseases.

Effect of in ovo feeding of γ-aminobutyric acid combined with embryonic thermal manipulation on hatchability, growth, and hepatic gene expression in broilers

  • Chris Major, Ncho;Akshat, Goel;Vaishali, Gupta;Chae-Mi, Jeong;Yang-Ho, Choi
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.284-294
    • /
    • 2023
  • Objective: This study investigated the effects of in ovo feeding of γ-aminobutyric acid (GABA) and embryonic thermal manipulation (ETM) on growth performance, organ indices, plasma biochemical parameters, hepatic antioxidant levels, and expression of lipid metabolism-related genes in broilers. Methods: Two hundred and fifty eggs were assigned to one of four treatments: control eggs incubated under standard conditions (CON); eggs that received an in ovo injection of 10% GABA on day 17.5 of incubation (G10); thermally manipulated eggs between days 10 and 18 of incubation at 39.6°C for 6 h daily (TM); and eggs that received both treatments during incubation (G10+TM). After 28 days of rearing, five birds per treatment were selected for blood and organ sampling. Results: No differences were found in hatchability or growth parameters among different treatment groups. Hepatic gene expression of catalase (CAT) and glutathione peroxidase 1 (GPx1) was upregulated (p = 0.046 and p = 0.006, respectively) in the G10+TM group, while that of nuclear factor erythroid 2-related factor 2 (NRF2) was upregulated (p = 0.039) in the G10 group. In addition, the relative gene expression of NADPH oxidase 1 (NOX1) was significantly lower (p = 0.007) in all treatment groups than that in the CON group. Hepatic fatty acid synthase (FAS) levels and average daily feed intake (ADFI) of last week showed a positive correlation (r = 0.50, p = 0.038). In contrast, the relative gene expression of the extracellular fatty acid-binding protein (EXFAB) and peroxisome proliferator-activated receptor-γ (PPAR-γ) were positively correlated (r = 0.48, p = 0.042 and r = 0.50, p = 0.031) with the overall ADFI of birds. Conclusion: Taken together, the results of this study suggest that the combination of in ovo feeding of GABA and ETM can enhance hepatic antioxidant function in broilers.

Hepatoprotecive Effects of Puerariae Flos Extract on Experimental Non-alcoholic Fatty Liver Disease Models (비알콜성 지방간 동물모델에서 갈화추출물의 간보호 효과)

  • Hwang, Hyeong-Chil;Kong, Ryong;Kang, Ok-Hwa;Kwo, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2018
  • Objectives : The aim of this study is to investigate the preventive effect of Puerariae Flos ethanol extract (PE) on methionin and choline deficient (MCD)-diet-induced Nonalcoholic fatty liver disease (NAFLD) in C57BL/6J mice. Methods : In the in vivo experiments, C57BL/6J mice were divided into 4 groups; Normal group, Control group, MCD+PE 100 group, and MCD+PE 300 group. After 4 weeks, body weight, liver weight, biochemical parameters for liver function test, histological changes, reverse transcription polymerase chain reaction (RT-PCR), and Western blot were assessed. Results : Mice lost body weight with the MCD-diet and the MCD+PE 100 group and MCD+PE 300 groups lost less than the control group, though showed no statistical significance. Liver weights were decreased by the MCD diet, but MCD+PE 300 groups were increased significantly. In the liver function test, all the values were decreased with the MCD-diet, MCD+PE 100 group and MCD+PE 300 groups were increased significance. In histological findings of the livers, MCD-diet induced severe fatty accumulation in the livers, but this fatty change was reduced in the MCD+PE 100 group and MCD+PE 300 groups was inhibited respectively. In lipid accumulation factors (such as SREBP-1c, $C/EBP{\alpha}$, PPAR-${\gamma}$), MCD+PE 100 group and MCD+PE 300 groups showed inhibitory effect on liver lipogenesis by reducing associated gene expressions caused by MCD diet. Conclusions : We were able to know that Puerariae Flos ethanol extract (PE) shown hepatoprotective effects via a decrease on the hepatic lipogenesis factors in the experimental NAFLD Models.

Effect of Dietary Supplementation of Acanthopanax senticosus and Eucommiaceae on the Expression of Lipogenic, Myogenic and Antioxidant Enzyme Genes in Broiler Chickens (육계에서 가시오갈피와 두충의 첨가 급여가 항산화 효소, 지방 및 근육 관련 유전자 발현에 미치는 영향)

  • Kang, H.K.;Beloor, J.;Sohn, S.H.;Jang, I.S.;Moon, Y.S.
    • Korean Journal of Poultry Science
    • /
    • v.36 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • This study was carried out to investigate the effect of dietary supplementation of Acanthopanax (A) senticosus and Eucommiaceae on the expression of lipogenic, myogenic and oxidative stress genes in broiler chickens. Birds were subjected (assigned) to one of the following 5 dietary treatments: control (CON), A. senticosus 0.5% (T1), 1.0% (T2), Eucommiaceae 0.5% (T3) and 1% (T4). Each treatment was replicated 8 times with 4 birds per replication, housed in 4 birds per cage. Birds were arranged according to randomized block design. Feeding trial was conducted from day 4 to 35th day of age. Liver and muscle tissues were collected for analysis. Broilers subjected to 1% A. senticosus had higher feed conversion ratio than the other treated birds whereas no significant differences were found in body weight, weight gain and feed intake. The gene expression levels of fatty acid synthase were not different among the treatments while the transcription factor $PPAR{\gamma}$ was highly expressed in Eucommiaceae but not in control and A. senticosus. The gene expression levels of myogenin were high in both A. senticosus and Eucommiaceae compared to control group. MyoD also showed high expression in treated groups furthermore, Eucommiaceae stimulated the expression of MyoD more than that of A. senticosus. The antioxidant gene expressions (SOD, CAT, SOD, GPX) generally were not much different among the treatments, however, SOD and GPX were stimulated in broilers consumed 1% Eucommiaceae diet. The result of this experiment showed that dietary supplementation of A. senticosus and Eucommiaceae in broiler may improve the antioxidant defence system through SOD and GPX without affect of growth performance in broilers.

Anti-Obesity Effect of Pine Cone (Pinus koraiensis) Supercritical Extract in High-Fat Diet-Induced Obese Mice (고지방식이로 유도한 비만 Mice에서 잣송이 초임계 추출물의 항비만 효과)

  • Lee, Dasom;Lee, Minhee;Kim, Hyesook;Jeong, Tuk-Rai;Yang, Hyun-Pil;Hyun, Heo Seok;Lee, Jeongmin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1701-1707
    • /
    • 2016
  • The present study investigated the anti-obesity effect of pine cone (PC, Pinus koraiensis) supercritical extract in high-fat diet (HFD)-induced obese mice. Male C57BL/6J mice were treated with HFD, HFD+catechin, and HFD+PC [two different doses, 20 mg/kg body weight (b.w.) and 100 mg/kg b.w.] in each AIN93G supplement for 8 weeks. Treatment of HFD mice with both low and high doses of PC significantly reduced body weight gain compared to HFD mice. Liver weight of mice was reduced in both the low and high dose PC-supplemented groups (24.19% and 19.83%, respectively). Total adipose tissue weight of mice was reduced in both the low and high dose PC-supplemented groups (45.54% and 62.66%, respectively). Serum total cholesterol, triglyceride, LDL cholesterol, and HDL cholesterol were reduced in the low and high dose PC-supplemented groups, and ratios of HDL cholesterol to LDL cholesterol increased by 94.55% in the high dose PC-supplemented group. Serum leptin was significantly reduced in the low and high dose PC-supplemented groups (28.14% and 62.72%, respectively). These results were supported by genetic expression of protein and enzymes related to lipid metabolism assessed by real-time PCR. There was significant reduction of lipid regulatory transcription factors such as $PPAR-{\gamma}$, C/EBP, and SREBP and lipid enzymes such as fatty acid synthesis and lipoprotein lipase in the low and high dose PC-supplemented groups. However, there was no statistical difference between low and high dose PC treatments. These results suggest that pine cone supercritical extract supplementation is able to regulate serum lipid profiles by reducing total cholesterol, triglyceride, and LDL cholesterol levels, followed by regulation of expression of lipid metabolic factors, resulting in reduction of weight gain in HFD-induced obese mice.

Tributyltin Induces Adipogenesis and Apoptosis of Rat Thymic Epithelial Cells (Tributyltin에 의한 흰쥐 흉선 내 상피세포의 지방세포 유도와 세포자연사 증가)

  • Lee, Hyo-Jin;Lee, A-Ra;Ahn, Bo-Ram;Jeon, Eun-Je;Jeong, Ye-Ji;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.373-383
    • /
    • 2011
  • Tributyltin (TBT) is one of endocrine disrupters which are known as having similar function to sex steroid hormone inducing apoptosis in various tissues of rodents. Recently, it has been reported that TBT induces apoptosis in thymus causing the decreased thymic function, but little is known about the mechanism. To elucidate the mechanism, three-week-old SD female rats were orally administrated with TBT 1, 10, and 25 mg per body weight (kg) and sesame oil as a control for 7 days. On day 8, the thymi were obtained and weighed, and then the number of thymocytes was counted. We also performed H&E staining, TUNEL assay, and Annexin V flow cytometric analysis to examine the apoptosis rates and the structure in the thymus. Next, we investigated the adipogenesis and apoptosis-related mRNA expression levels in the thymi by real-time PCR. The thymic weight and the number of thymocytes were decreased by TBT in a dose-dependent manner. As a result of the H&E staining, the boundary between cortical and medullary area was blurred in the thymi of TBT treated rats compared to those of controls. In the results of TUNEL assay and Annexin V flow cytometric analysis, apoptosis rates in the thymus were increased after TBT treatment. The expression levels of thymic epithelial cell marker genes such as EVA, KGF, AIRE, and IL-7 were significantly decreased in the thymi of TBT treated rats, but $PPAR{\gamma}$, aP2, PEPCK, and CD36 were significantly increased. The expression of $TNF{\alpha}$ and TNFR1 as apoptosis-related genes also was significantly increased after TBT treatment. The present study demonstrates that TBT can increase the expression of adipogenesis and apoptosis-related genes leading to apoptosis in the thymus. These results suggest that the increased adipogenesis of thymus by TBT exposure might induce apoptosis in the thymus resulting in a loss in thymic immune function.

Pro-apoptotic and Anti-adipogenic Effects of Proso Millet (Panicum miliaceum) Grains on 3T3-L1 Preadipocytes (기장(Panicum miliaceum)의 마우스 3T3-L1 세포에 대한 에폽토시스 유발 및 지방세포형성 억제 효능)

  • Jun, Do Youn;Lee, Ji Young;Han, Cho Rong;Kim, Kwan-Pil;Seo, Myung Chul;Nam, Min Hee;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.505-514
    • /
    • 2014
  • To examine the anti-obese activity of miscellaneous cereal grains, 80% ethanol extracts from eight selected miscellaneous cereal grains were compared for their cytotoxic effects on 3T3-L1 murine preadipocytes. The ethanol extract of proso millet exhibited the highest cytotoxicity. Further fractionation of the ethanol extract with methylene chloride, ethyl acetate, and n-butanol showed that the cytotoxicity of the ethanol extract was mainly partitioned into the butanol fraction. As compared with differentiated mature adipocytes, 3T3-L1 preadipocytes were more susceptible to the cyctotoxicity of the butanol fraction. When each organic solvent fraction (25 ${\mu}g/ml$) was added during the differentiation period for 6 days, the cell viability was not affected significantly except for the butanol fraction, but the intracellular lipid accumulation declined to a level of 81.5%~50.3% of the control. The Oil Red O staining data also demonstrated that the ethanol extract as well as the butanol fraction could inhibit the differentiation of 3T3-L1 preadipocytes into mature adipocytes. The presence of the butanol extract during the induced adipocytic differentiation also resulted in a significant reduction in the expression levels of critical adipogenesis mediators $(C/EBP{\alpha}$, $PPAR{\gamma}$, aP2, and LPL) to a barely detectable or undetectable level and the cells retained the fibroblast-like morphology of 3T3-L1. In 3T3-L1 cells, the cytotoxicity of the butanol fraction (50-100 ${\mu}g/ml$) was accompanied by mitochondrial membrane potential (${\Delta}{\psi}m$) loss, caspase-3 activation, and PARP degradation. Taken together, these results indicate that proso millet grains possess pro-apoptotic and anti-adipocytic activities toward adipocytes, which can be applicable to prevention of obesity.