• Title/Summary/Keyword: PP/GF

Search Result 27, Processing Time 0.018 seconds

Evaluation of Impregnation and Mechanical Properties of Thermoplastic Composites with Different GF Content of GF/PP Commingled Fiber (유리섬유/폴리프로필렌 복합원사의 유리섬유 함량 변화에 따른 열가소성 복합재료의 함침 및 기계적 특성 평가)

  • Jang, Yeong-Jin;Kim, Neul-Sae-Rom;Kwon, Dong-Jun;Yang, Seong Baek;Yeum, Jeong Hyun
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.346-352
    • /
    • 2020
  • In mobility industries, the use of thermoplastic composites increased dynamically. In this study, the mechanical and impregnation properties of continuous glass fiber (GF)/polypropylene (PP) composite were evaluated with different GF contents. The GF/PP commingled fiber was manufactured with different GF contents and continuous GF/PP composite was manufactured using continuous compression molding process. Tensile, flexural, and impact test of specimens were evaluated with different GF contents. The fracture behavior of specimens was proved using field emission-scanning electron microscope images of fracture area and impregnation property was evaluated using dynamic mechanical analyzer and interlaminar shear strength. Finally, the GF/PP composite was the optimized mechanical and impregnation properties using 50 wt.% GF/PP commingled fiber.

A Study on the Ternary GF/PA/PP Composites Manufactured by Using Pre-impregnated Glass Fiber (유리섬유를 미리 함침시켜 제조한 GF/PA/PP 삼성분 복합재료에 관한 연구)

  • 윤병선;우동진;서문호;이석현
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.701-712
    • /
    • 2000
  • The continuous fiber reinforced composites of GF/PA were fabricated using a pultrusion resin impregnation apparatus and cut into pellets of 6 mm length. GF/PA pellets were then melt-mixed with PP resin to prepare new types of ternary composites, GF/PA/PP. Mechanical and rheological properties of such composites revealed to be better than conventional ternary composites due to the longer average glass fibers. Measurements also showed that the mechanical properties of the composites prepared by direct injection molding were higher than those of the composites prepared by injection molding followed by extrusion. To improve adhesions of fiber surfaces and polymer matrix, PP-MAH (maleic anhydride) has been introduced in the GF/PA/PP composites as a compatibilizer. It was found that PP-MAH did indeed improve surface adhesion between fibers and polymer matrix and that, as a result, various mechanical properties were markedly enhanced. Visualization of the phase structure in the samples was done by means of SEM. The surfaces of glass fibers in GF/PA/PP composites revealed that the fibers remained to be encapsulated by PA resin. However, pre-encapsulation did not persist in GF/PA/PP/PP-MAH composites due to the improvement of surface adhesion between fibers and polymer matrix, although resin sticking to the fiber was observed.

  • PDF

Effect of Temperature on Tensile Fracture Behavior of Glass Fiber Polypropylene Composites (온도변화에 따른 GF/PP복합재료의 인장파괴거동)

  • 고성위;엄윤성;허경환;김엄기;김형진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.3
    • /
    • pp.240-245
    • /
    • 2001
  • The tensile strength and failure mechanisms of glass fiber polypropylene (GF/PP) composites are investigated in the temperature range from ambient to 8$0^{\circ}C$. The tensile strength increases as fiber volume fraction ratio increase. The tensile strength shows a maximum at ambient temperature, and it tens to decrease as temperature goes up. Major failure mechanisms of GF/PP composites can be classified as fiber matrix debonding, fiber pull-out, delamination and matrix deformation.

  • PDF

Measurement of Degree of Hydrolysis of a PA66/GF Composite using a py-GC/MS analysis

  • Lee, Jong-Young;Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.59-68
    • /
    • 2017
  • The effect on the hydrolysis resistance properties by the addition of maleic anhydride grafted EMDM (MA-g-EPDM) and PP (MA-g-PP) to a PA66/GF composite was investigated with respect to the mechanical properties, thermal properties, and morphology. The degree of hydrolysis of the PA66/GF composite was measured using py-GC/MS analysis. When compared to the PA66/GFcomposite in MEG/water solution, the composites where MA-g-EPDM and MA-g-PP were added to PA66/GF showed a higher degree of hydrolysis resistance, impact strength, and thermal properties, whereas their tensile strength, tensile modulus, flexural strength and flexural modulus decreased. As immersion time in the solution increases, the rate of tensile strength drop of the MA-g-PP added composite appeared lower than that of the PA66/MA-g-EPDM/GF and PA66/GF composites. The py-GC/MS analysis confirmed the formation of PA66 hydrolysis reaction by products such as carboxylic acid and alkylamine with increasing immersion time.

LOCAL PERMUTATION POLYNOMIALS OVER FINITE FIELDS

  • Lee, Jung-Bok;Ko, Hyoung-June
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.539-545
    • /
    • 1994
  • Let $q = p^r$, where p is a prime. A polynomial $f(x) \in GF(q)[x]$ is called a permutation polynomial (PP) over GF(q) if the numbers f(a) where $a \in GF(Q)$ are a permutation of the a's. In other words, the equation f(x) = a has a unique solution in GF(q) for each $a \in GF(q)$. More generally, $f(x_1, \cdots, x_n)$ is a PP in n variables if $f(x_1,\cdots,x_n) = \alpha$ has exactly $q^{n-1}$ solutions in $GF(q)^n$ for each $\alpha \in GF(q)$. Mullen ([3], [4], [5]) has studied the concepts of local permutation polynomials (LPP's) over finite fields. A polynomial $f(x_i, x_2, \cdots, x_n) \in GF(q)[x_i, \codts,x_n]$ is called a LPP if for each i = 1,\cdots, n, f(a_i,\cdots,x_n]$ is a PP in $x_i$ for all $a_j \in GF(q), j \neq 1$.Mullen ([3],[4]) found a set of necessary and three variables over GF(q) in order that f be a LPP. As examples, there are 12 LPP's over GF(3) in two indeterminates ; $f(x_1, x_2) = a_{10}x_1 + a_{10}x_2 + a_{00}$ where $a_{10} = 1$ or 2, $a_{01} = 1$ or x, $a_{00} = 0,1$, or 2. There are 24 LPP's over GF(3) of three indeterminates ; $F(x_1, x_2, x_3) = ax_1 + bx_2 +cx_3 +d$ where a,b and c = 1 or 2, d = 0,1, or 2.

  • PDF

Improvements of Impact strength in Glass Fiber/Polypropylene Composite by Silane Coupling Agents (실란커플링제에 의한 유리섬유/폴리프로필렌 복합재료의 충격강도 증가에 관한 연구)

  • 정광보
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.43-47
    • /
    • 2001
  • Effect of coupling agent on the mechanical properties of PP/GF blend was investigated. The flexural modulus, Izod impact strength, elongation at yield and tensile strength were improved with using coupling agent. Mopological studies revealed that PP and GF were incompatible and addition of coupling agent was very effective to enhance the compatibility, result in mechanical properties.

  • PDF

Temperature Effect on Impact Fracture Behavior of GF/PP Composites (GF/PP 복합재료의 충격파괴거동에 대한 온도효과)

  • Koh, Sung-Wi;Um, Yoon-Sung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.78-84
    • /
    • 2005
  • The main goal of this work is to study the effects of temperature and volume fraction of fiber on the Charpy impact test with GF/PP composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of 60^{\circ}C$ to -50^{\circ}C$ by impact test. The critical fracture energy increased as the fiber volume fraction ratio increased. The critical fracture energy shows a maximum at ambient temperature and it tends to decreases as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

Mechanical and thermal properties of Homo-PP/GF/CaCO3 hybrid nanocomposites

  • Parhizkar, Mehran;Shelesh-Nezhad, Karim;Rezaei, Abbas
    • Advances in materials Research
    • /
    • v.5 no.2
    • /
    • pp.121-130
    • /
    • 2016
  • In an attempt to reach a balance of performances in homo-polypropylene based system, the effects of single and hybrid reinforcements inclusions comprising calcium carbonate nanoparticles (2, 4 and 6 phc) and glass fibers (10 wt.%) on the mechanical and thermal properties were investigated. Different samples were prepared by employing twin-screw extruder and injection molding machine. In morphological studies, the uniform distribution of glass fibers in PP matrix, relative adhesion between glass fibers and polymer, and existence of nanoparticles in polymer matrix were observed. $PP/CaCO_3$ (6 phc) as compared to pure PP and PP/GF had superior tensile and flexural strengths, impact resistance and deformation temperature under load (DTUL). $PP/GF/CaCO_3$ (6 phc) composite displayed comparable tensile and flexural strengths and impact resistance to neat PP, while its tensile and flexural moduli and deformation temperature under load (DTUL) were 436%, 99% and $26^{\circ}C$greater respectively. The maximum impact resistance was observed in $PP/CaCO_3$(6 phc). The highest DTUL was perceived in PP hybrid nanocomposite containing 10 wt.% glass fiber and 4 phc $CaCO_3$ nanoparticle.

Temperature Effects on Impact Fracture Mechanisms of Glass Fiber/Polypropylene Campsites (유리섬유/폴리프로필렌 복합재료의 충격파괴기구에 대한 온도효과)

  • KOH S. W.;Um Y. S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.314-319
    • /
    • 2004
  • Many of researches regarding mechanical properties of composite materials are associated with humid environment and temperature. Especially the temperature is a very important factor influencing the design of thermoplastic composites. However, the effect of temperature on impact behavior of reinforced composites have not yet been fully explored. An approach which predicts critical fracture toughness GIC was performed by the impact test in this work The main goal of this work is to study effects of temperature in the impact test with glass fiber/polypropylene(GF/pp) composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of $60^{\circ}C\;to\;-50^{\circ}C$ by impact test. The critical fracture energy shows a maximum at ambient temperature and it tends to decrease as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

  • PDF

A Study on the Warpage in Injection Molded Part for Various Rib Design and Reinforced Resins (보강 수지의 종류와 사출성형품의 리브 설계에 따른 휨의 연구)

  • Lee, Min;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.67-72
    • /
    • 2012
  • Most of the plastics products have been manufactured by injection molding. Molding trouble in injection-molded parts is caused by changing a molding product and molding process condition, etc. In this study, warpage in the injection molded part have been studied. Specimens are rectangular flat shape with and without ribs. Non-crystalline resins (ABS+GF30%, PC+GF30%) and crystalline resins (PP+GF30%, PA66+GF30%) were used for material. Flat shape ribs showed higher warpage than flat shape without rib by 10 to 41%. the specimens with ribs that are located parallel to flow direction has higher warpage than the specimens with rib that are located perpendicular to flow direction by 11 to 50%. crystalline resins have higher warpage than non-crystalline resins by 22 to 78%. Warpage decreases as packing time increases as injection temperature increases.

  • PDF