• Title/Summary/Keyword: POWER

Search Result 90,791, Processing Time 0.078 seconds

Economic Comparison of Wind Power Curtailment and ESS Operation for Mitigating Wind Power Forecasting Error (풍력발전 출력 예측오차 완화를 위한 출력제한운전과 ESS운전의 경제성 비교)

  • Wi, Young-Min;Jo, Hyung-Chul;Lee, Jaehee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.158-164
    • /
    • 2018
  • Wind power forecast is critical for efficient power system operation. However, wind power has high forecasting errors due to uncertainty caused by the climate change. These forecasting errors can have an adverse impact on the power system operation. In order to mitigate the issues caused by the wind power forecasting error, wind power curtailment and energy storage system (ESS) can be introduced in the power system. These methods can affect the economics of wind power resources. Therefore, it is necessary to evaluate the economics of the methods for mitigating the wind power forecasting error. This paper attempts to analyze the economics of wind power curtailment and ESS operation for mitigating wind power forecasting error. Numerical simulation results are presented to show the economic impact of wind power curtailment and ESS operation.

The Analysis of Active Power Control Requirements in the Selected Grid Codes for Wind Farm

  • Kim, Mi-Young;Song, Yong-Un
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1408-1414
    • /
    • 2015
  • The renewable energies such as photovoltaic power, wind power and biomass have grown to a greater extent as decarbonization techniques. The renewable energies are interconnected to power systems (or electrical grids) in order to increase benefits from economies of scale, and the extra attention is focused on the Grid Code. A grid code defines technical parameters that power plants must meet to ensure functions of power systems, and the grid code determined by considering power system characteristics is various across the country. Some TSO (Transmission System Operator) and ISO (Independent System Operator) have issued grid code for wind power and the special requirements for offshore wind farm. The main purpose of the above grid code is that wind farm in power systems has to act as the existing power plants. Therefore wind farm developer and wind turbine manufacturer have great difficulty in grasping and meeting grid code requirements. This paper presents the basic understanding for grid codes of developed countries in the wind power and trends of those technical requirements. Moreover, in grid code viewpoint, the active power control of wind power is also discussed in details.

Modelling and Simulating the Spatio-Temporal Correlations of Clustered Wind Power Using Copula

  • Zhang, Ning;Kang, Chongqing;Xu, Qianyao;Jiang, Changming;Chen, Zhixu;Liu, Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1615-1625
    • /
    • 2013
  • Modelling and simulating the wind power intermittent behaviour are the basis of the planning and scheduling studies concerning wind power integration. The wind power outputs are evidently correlated in space and time and bring challenges in characterizing their behaviour. This paper provides a methodology to model and simulate the clustered wind power considering its spatio-temporal correlations using the theory of copula. The sampling approach captures the complex spatio-temporal connections among the wind farms by employing a conditional density function calculated using multidimensional copula function. The empirical study of real wind power measurement shows how the wind power outputs are correlated and how these correlations affect the overall uncertainty of clustered wind power output. The case study validates the simulation technique by comparing the simulated results with the real measurements.

Constant Output Power Control Methods for Variable-Load Wireless Power Transfer Systems

  • Liu, Xu;Clare, Lindsay;Yuan, Xibo;Wang, Jun;Wang, Chonglin;Li, Jianhua
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.533-546
    • /
    • 2018
  • This study proposes a comprehensive mathematical model that includes coil-system circuit and loss models for power converters in wireless power transfer (WPT) systems. The proposed model helps in understanding the performance of WPT systems in terms of coil-to-coil efficiency, overall efficiency, and output power capacity and facilitates system performance optimization. Three methods to achieve constant output power for variable-load systems are presented based on system performance analysis. An optimal method can be selected for a specific WPT system by comparing the efficiencies of the three methods calculated with the proposed model. A two-coil 1 kW WPT system is built to verify the proposed mathematical model and constant output power control methods. Experimental results show that when the load resistance varies between 5 and $25{\Omega}$, the system output power can be maintained at 1 kW with a maximum error of 6.75% and an average error of 4%. Coil-to-coil and overall efficiencies can be maintained at above 90% and 85%, respectively, with the selected optimal control method.

A Study on Prediction of Power Consumption Rate of Middle School Building in Changwon City by Regression Analysis (회귀분석을 통한 창원시 중학교 전력소비량 예측에 관한 연구)

  • Cho, Hyeong-Kyu;Park, Hyo-Seok;Choi, Jeong-Min;Cho, Sung-Woo
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.12 no.2
    • /
    • pp.61-70
    • /
    • 2013
  • As the existing school building power consumption is expressed by total power consumption, in the view of energy saving is disadvantage. The the power consumption of school building is divided as cooling, heating, lighting and others. The cooling power consumption, heating power consumption, lighting power consumption can be calculated using real total power consumption that gained from Korea Electric Power Corporation(KEPCO). The power consumption for cooling and heating can be calculated using heat transmittance, wall area and floor area, and for lighting is calculated by artificial lighting calculation. but this calculation methods is difficult for laymen. This study was carried out in order to establish the regression equation for cooling power consumption, heating power consumption, lighting power consumption and other power consumption in school building. In order to verify the validity of the regression equation, it is compared regression equation results and calculation results based on real power consumption. As the results, difference between regression result and calculation results for cooling and heating power consumption showed 0.6% and 3.6%.

Analysis of the Distribution STATCOM Operating Results for Improving Distribution System Power Quality (전력품질 향상을 위한 배전용 STATCOM 운전결과 분석)

  • 오관일;전영수;박상태;추진부
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.377-385
    • /
    • 2000
  • This paper presents the test and operation results of the domestic demonstration of the reactive power compensation device called STATCOM (STATic COMpensator). The object of the paper is to describe the reliability of the unit based on the extensive operation databases. The custom power is similar in nature to the concept of FACTS(Flexibel AC Transmission System). By controlling reactive power, the technology offers utilities the opportunity for increased efficiency and their capabilities will permit transmission planners make the best use of their existing transmission resources. STATCOM is a custom power device in a way and can be used in a similar way for the dynamic compensation of power transmission systems, providing reactive power compensation, voltage regulation and mitigation of voltage flicker. It is shown that the STATCOM has clear advantages in areas such as; providing reactive power compensation and improving power factor.

  • PDF

The Recommendation on Power Saving through the Measuring of the Standby Power of OA Equipments (OA기기의 대기전력 측정을 통한 절전 평가 제안)

  • Kim, Man-Geon;Choi, Don-Mook
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.161-167
    • /
    • 2013
  • The purpose of this study was to assess power loss in the computer and office automation equipment and identified a way to save power consumptions through field measurement. In this study, the meaning of standby power was to consume power while waiting for the use of any electronic equipment. This standby consumption was about 11% of total power consumption even though we did not seriously realize it. Therefore, it was very important to measure accurate power consumption at the standby status of electronic equipment. In addition, it also helped to reduce potential risks of electricity associated disasters. This study proposed the way to reduce power losses through automatic turn off switches for power outlets and switches. Finally, this study can evaluate power consumption patterns that can reduce power consumptions and potential risks of power related disasters. This also can achieve the goals of sustainability that can reduce environmental impacts by lowering energy consumptions and greenhouse gas emissions.

Power Quality Analysis of Jeju Power System during HVDC Overhaul using PSCAD/EMTDC (PSCAD/EMTDC에 의한 직류연계선 오버홀시 제주계통의 전력품질 분석)

  • Kang, Bo-Seung;Kim, Jae-Hong;Kim, Eel-Hwan;Kim, Se-Ho;Oh, Seong-Bo;Song, Ki-Heouk
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.82-84
    • /
    • 2008
  • This paper presents the modeling and power quality analysis of Jeju island power system connected with wind farm, and thermal power plant. It is for indicating the influence of wind farm operation in steady and transient state in Jeju island power system during the HVDC system overhaul period. For the computer simulation, three kinds of main item are modeled, which are 67[MW] wind farm, thermal power plant and Jeju power load. To analyze the influence of the wind power generation to the Jeju power system, two kinds of simulations are carried out by using the PSCAD/EMTDC program. One is the steady state operation under the variable speed wind, and the other is the transient state operation when all of wind farms in Jeju island are disconnected from the Jeju power grid instantaneously on the rated power output. With the comparison of these results, it is useful for analyzing the power quality of Jeju power system versus wind power generation.

  • PDF

Design of SPS in the Korean Power System Against Faults on 765 KV Lines

  • Park Jong-Young;Park Jong-Keun;Jang Byung-Tae
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.132-137
    • /
    • 2005
  • In Korea, the protection systems against the instability of the nation's power system are insufficient in contrast with many other countries. In addition, there have just been studies carried out on detecting power system instability, while only a few studies pertaining to protection plans against instability exist. This paper focuses on systems to protect against the instability phenomena in the Korean power system. In this paper, we survey possible contingencies in the Korean power system and suggest outline and specs of the SPS (System Protection Scheme) against faults on the 765 kV line, based on simulations. It is concluded that event-based SPS for transient stability is appropriate for the Korean power system. In the simulations, the most severe contingency on the Korean power system is the fault on 765 kV transmission lines. If one of these lines is tripped by a fault, synchronism may be lost on the power plants near this line because of heavy power flow carried by them. In addition, undervoltage in the Metropolitan region is a serious problem in this case since this region receives about half its total power flow through these lines. In order to prevent a synchronism loss, some power plants have to be rejected according to the situations in the simulations.

A Study on a Methodology of Determining an Appropriate Load Power Factor Effectively by the Use of Reactive Power Sensitivity and Load Duration Curve (무효전력 민감도와 부하지속곡선을 활용한 적정 부하역률의 효과적인 산정 기법에 관한 연구)

  • Lee, Byung Ha;Hwang, Sung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1782-1790
    • /
    • 2012
  • In this paper, a methodology to use load duration curve and the reactive power factor sensitivity of generation cost is proposed for analyzing the effects of load power factor effectively. A great deal of cases of power systems are classified into several patterns according to the characteristics using load duration curve, and the overall effects of load power factor are assessed by integrating the analysis results of load power factor in all the patterns. The reactive power sensitivity of generation cost and the integrated costs such as generation cost, investment cost, voltage variation penalty cost and CO2 emission cost are used for determining an appropriate load power factor. A systematic procedure for effective analysis of load power factor is presented. It is shown through the application to the practical power system of KEPCO(Korea Electric Power Corporation)that the effects of load power factor can be analyzed effectively using load duration curve and reactive power factor sensitivity.