• 제목/요약/키워드: POPC bilayer

검색결과 7건 처리시간 0.026초

Molecular Dynamics Simulations of Hemolytic Peptide δ-Lysin Interacting with a POPC Lipid Bilayer

  • Lorello, Kim M.;Kreutzberger, Alex J.;King, Allison M.;Lee, Hee-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.783-792
    • /
    • 2014
  • The binding interaction between a hemolytic peptide ${\delta}$-lysin and a zwitterionic lipid bilayer POPC was investigated through a series of molecular dynamics (MD) simulations. ${\delta}$-Lysin is a 26-residue, amphipathic, ${\alpha}$-helical peptide toxin secreted by Staphylococcus aureus. Unlike typical antimicrobial peptides, ${\delta}$-lysin has no net charge and it is often found in aggregated forms in solution even at low concentration. Our study showed that only the monomer, not dimer, inserts into the bilayer interior. The monomer is preferentially attracted toward the membrane with its hydrophilic side facing the bilayer surface. However, peptide insertion requires the opposite orientation where the hydrophobic side of peptide points toward the membrane interior. Such orientation allows the charged residues, Lys and Asp, to have stable salt bridges with the lipid head-group while the hydrophobic residues are buried deeper in the hydrophobic lipid interior. Our simulations suggest that breaking these salt bridges is the key step for the monomer to be fully inserted into the center of lipid bilayer and, possibly, to translocate across the membrane.

Flip-Flop of Phospholipids in DMPC/POPC Mixed Vesicles

  • Kim, Min Ki;Kim, Chul
    • 대한화학회지
    • /
    • 제64권3호
    • /
    • pp.145-152
    • /
    • 2020
  • Flip-flop rate constants were measured by dithionite assay of NBD-PE fluorescence in DMPC/POPC vesicles made of various DMPC/POPC ratios. The activation energy, enthalpy, entropy, and free energy were determined based on the transition state theory. We found that the activation energy, enthalpy, and entropy increased as the amount of POPC increased, but the activation free energy was almost constant. These experimental results and other similar studies allow us to propose that the POPC molecules included in DMPC vesicles affect the flip-flop motion of NBD-PE in DMPC/POPC vesicles via increasing the packing order of the ground state of the bilayer of the vesicles. The increase in the packing order in the ground state seems to be a result of the effect of the overall molecular shape of POPC with a monounsaturated tail group, rather than the effect of the longer tail group.

항균성 펩타이드와 혼합된 인지질 분자의 상 변화에 있어서 수화 효과에 대한 고체 핵자기 공명 연구 (A solid-state NMR study on the hydration effect on the lipid phase change in the presence of an antimicrobial peptide)

  • 김철
    • 분석과학
    • /
    • 제26권6호
    • /
    • pp.395-400
    • /
    • 2013
  • 얇은 유리판 위에서 자동적으로 정렬되는 인지질 분자의 정렬도에 대한 수분 및 항균성 펩타이드의 효과를 고체 핵자기 공명 분광법을 이용하여 조사하였다. 순수한 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphotidylcholine (POPC) 인지질 만을 유리판 위에서 정렬시킬 때에는 직접적인 물의 투입 없이 95% 상대 습도에서 수일간 수화시키는 것만으로 충분했다. 하지만, protegrin-1 (PG-1)과 같은 항균성 펩타이드가 혼합되어 있는 인지질의 경우에는 95%의 상대 습도에서 수일간 수화시키는 것과 약간의 물을 시료에 직접 투입하여 수화시키는 것이 크게 달라진다는 것을 확인하였다. 충분한 양의 물이 투입되었을 때, 지질 이중막 위에서 인지질 분자들의 표면 움직임이 매우 활발하였다. 순수한 POPC 분자들이 얇은 유리판 위에서 정렬되는 시간에 비해 항균성 펩타이드가 혼합되어 있는 경우에는 POPC 분자들이 평형상을 이루어질 때까지는 상당한 시간이 필요함을 확인하였다.

An NMR Study on the Phase Change of Lipid Membranes by an Antimicrobial Peptide, Protegrin-1

  • Kim, Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.372-378
    • /
    • 2010
  • Membrane disruption by an antimicrobial peptide, protegrin-1 (PG-1), was investigated by measuring the $^2H$ solid-state nuclear magnetic resonance (SSNMR) spectra of 1-palmitoyl-$d_{31}$-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC_$d_{31}$) in the mixture of PG-1 and POPC_$d_{31}$ lipids deposited on thin cover-glass plates. The experimental line shapes of anisotropic $^2H$ SSNMR spectra measured at various peptide-to-lipid (P/L) ratios were simulated reasonably by assuming the mosaic spread of bilayers containing pore structures or the coexistence of the mosaic spread of bilayers and a fast-tumbling isotropic phase. Within a few days of incubation in the hydration chamber, the pores were formed by the peptide in the POPC_$d_{31}$ and POPC_$d_{31}$/cholesterol membranes. However, the formation of the pores was not clear in the POPC_$d_{31}$/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) membrane. Over a hundred days after hydration, a rapidly rotating isotropic phase increased in the POPC_$d_{31}$ and the POPC_$d_{31}$/cholesterol membranes with the higher P/L ratios, but no isotropic phase appeared in the POPC_$d_{31}$/POPG membrane. Cholesterol added in the POPC bilayer acted as a stabilizer of the pore structure and suppressed the formation of a fast-tumbling isotropic phase.

A Solid-state NMR Study of the Kinetics of the Activity of an Antimicrobial Peptide, PG-1 on Lipid Membranes

  • Kim, Chul;Wi, Sungsool
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권2호
    • /
    • pp.426-432
    • /
    • 2012
  • The activity of an antimicrobial peptide, protegrin-1 (PG-1), on lipid membranes was investigated using solidstate NMR and a new sampling method that employed mechanically aligned bilayers between thin glass plates. At 95% hydration and full hydration, the peptide respectively disrupted 25% and 86% of the aligned 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphotidylcholine (POPC) bilayers at a P/L (peptide-to-lipid) ratio of 1/20 under the new experimental conditions. The kinetics of the POPC bilayers disruption appeared to be diffusioncontrolled. The presence of cholesterol at 95% hydration and full hydration reduced the peptide disruption of the aligned POPC bilayers to less than 10% and 35%, respectively. A comparison of the equilibrium states of heterogeneously and homogeneously mixed peptides and lipids demonstrated the importance of peptide binding to the biomembrane for whole membrane disruption.

항균성 펩타이드에 의한 지질 이중막의 상 변화에 대한 NMR 연구 (An NMR Study on the Phase Changes of Lipid Bilayers by Antimicrobial Peptides)

  • 김철
    • 대한화학회지
    • /
    • 제54권2호
    • /
    • pp.183-191
    • /
    • 2010
  • 1-Palmitoyl-$d_{31}$-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC_$d_{31}$)로 이루어진 지질 이중막에 항균성 펩타이드 magainin 2와 aurein 3.3이 작용했을 때 일어나는 상변화를 중수소 고체 핵자기 공명 스펙트럼을 관측하여 탐구하였다. 측정된 중수소 고체 핵자기 공명 스펙트럼의 선모양을 이론적 모델 구조를 통하여 모사함으로써, 펩타이드-지질 혼합상태의 기하학적 구조상수 및 동력학적 표면 확산 계수 등을 구하였다. 펩타이드의 혼합 이후 5일 이내의 짧은 작용시간에는 지질 이중막의 정렬이 파괴되는 현상이 나타났으나, 100일 이후에는 magainin 2에 의해서는 타원형 원환체 기공 (elliptic toroidal pore)이, aurein 3.3에 의해서는 6각형 단면 막대구조 상(hexagonal phase)이 관측되었다. 지질 이중막 표면의 전하밀도가 항균성 펩타이드의 작용에 미치는 효과를 보기 위해 산성 지질인 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG)를 함유한 POPC_$d_{31}$/POPG 지질 이중막에 대해서도 동일한 실험을 수행하였다. 동일한 ${\alpha}$-나선형 구조를 가지는 두 펩타이드가 두 종류의 지질 이중막에 작용하는 과정의 차이를 확인할 수 있었다.

Effect of Cholesterol on the Phase Change of Lipid Membranes by Antimicrobial Peptides

  • Choi, Hyungkeun;Kim, Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1317-1322
    • /
    • 2014
  • Membrane disruption by an antimicrobial peptide (AMP) was investigated by measuring the $^2H$ solid-state nuclear magnetic resonance spectra of 1-palmitoyl-$d_{31}$-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC_$d_{31}$) in mixtures of POPC_$d_{31}$/cholesterol and either magainin 2 or aurein 3.3 deposited on thin cover-glass plates. The line shapes of the experimental $^2H$ solid-state nuclear magnetic resonance (SSNMR) spectra were best simulated by assuming the coexistence of a mosaic spread of bilayers containing pore structures and a fasttumbling isotropic phase or a hexagonal phase. Within a few days of incubation in a hydration chamber, an isotropic phase and a pore structure were induced by magainin 2, while in case of aurein 3.3 only an isotopic phase was induced in the presence of a bilayer phase. After an incubation period of over 100 days, alignment of the bilayers increased and the amount of the pore structure decreased in case of magainin 2. In contrast with magainin 2, aurein 3.3 induced a hexagonal phase at the peptide-to-lipid ratio of 1/20 and, interestingly, cholesterol was not found in the hexagonal phase induced by aurein 3.3. The experimental results indicate that magainin 2 is more effective in disrupting lipid bilayers containing cholesterol than aurein 3.3.