• Title/Summary/Keyword: POOL

Search Result 2,543, Processing Time 0.033 seconds

Fluid-structure interaction analysis of sloshing in an annular - sectored water pool subject to surge motion

  • Eswaran, M.;Goyal, P.;Reddy, G.R.;Singh, R.K.;Vaze, K.K.
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.181-201
    • /
    • 2013
  • The main objective of this work is to investigate the sloshing behavior in a baffled and unbaffled three dimensional annular-sectored water pool (i.e., tank) which is located at dome region of the primary containment. Initially two case studies were performed for validation. In these case studies, the theoretical and experimental results were compared with numerical results and good agreement was found. After the validation of present numerical procedure, an annular-sectored water pool has been taken for numerical investigation. One sector is taken for analysis from the eight sectored water pool. The free surface is captured by Volume of Fluid (VOF) technique and the fluid portion is solved by finite volume method while the structure portions are solved by finite element approach. Baffled and un-baffled cases were compared to show the reduction in wave height under excitation. The complex mechanical interaction between the fluid and pool wall deformation is simulated using a partitioned strong fluid-structure coupling.

Pooling Variance Tests Using Expected Mean Square in Split-Plot Designs (분할법에서 EMS알고리즘을 이용한 풀링분산검정)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.245-251
    • /
    • 2008
  • The research proposes three ANOVA(Analysis of Variance) tests using expected mean square(EMS) algorithms in various split-plot designs. The variance tests consist of Never-Pool test, Sometimes-Pool test and Always-Pool test. This paper also presents two EMS algorithms such as standard method and easy method. These algorithms are useful to make a decision rule for pooling. Numerical examples are illustrated for various split-plot designs such as split-plot designs, split-split-plot designs, repetition split-plot designs, and nested designs. Pragmatically, the results are summarized and compared with popular ANOVA spreadsheets and data model equations.

Analysis of Pool Price and Generators Revenue from Capacity Margin in Competitive Market (경쟁시장에서 설비예비율에 따른 Pool가격과 발전사업자 수익분석)

  • Kim, Chang-Su;Baek, Yeong-Sik;Lee, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.6
    • /
    • pp.269-275
    • /
    • 2002
  • Recently, Korea's electric industry has experienced substantial changes in its structure and function including the introduction of competition in the generation sector. Korea is in the early stages of market competition where the market price is determined by generation costs. In the future, the market Price will be determined by generators'bids. Therefore, the generators'profit is determined by market pool price, the prospects of pool price are very important for new capacity investment decision made by generators and IPPS. This study analyzes hourly marginal costs and LOLP considering basic generation mix and characteristics develops the relationship of pool price and Profit by generation-type using the change in reserve margin, and proposes basic direction for profits variation and supply-demand analysis in the electricity market in future.

Analysis of Weld Pool Flow and Shape Considering the Impact of Droplets in GMAW (GMAW에서 용적입사를 고려한 용융지 유동 및 형상해석)

  • 박현성;이세현;엄기원
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.40-47
    • /
    • 1998
  • In the present study, depressions of the GMA weld pool due to the impact of droplet are numerically investigated. The numerical simulation is conducted on the basis of the Navier-Stokes equation and the volume of fluid(VOF) functions. The kinetic energy of transferring droplet makes a depression of the weld pool surface. The surface active element affects the depression of the weld pool. The droplets transferred efficiently to the bottom of the weld pool, along with electromagnetic force make the finger shape penetration at the high current GMAW.

  • PDF

Flow and Heat Transfer along Burner Positions in Aluminium Pool Furnace (버너의 위치에 따른 알루미늄 용해로내의 유동 및 열전달)

  • Kim, Jin-Ho;Kang, Deok-Hong;Kim, Ki-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1207-1212
    • /
    • 2004
  • For the design of Aluminium pool furnace, position of burner and pool depth effects on flow and temperature field in Aluminium pool furnace are examined by the commercial computational code, CFD-ACE+. From the results, position of burner which is on the same face in side wall is better to distribute the flow field in Al furnace. That yields temperature to distribute more uniformly. And the burner position is on upper wall, fire frame reach pool surface. Customer must consider that, because it make Aluminium to oxidize.

  • PDF

Systems Engineering Process Approach to the Probabilistic Safety Assessment for a Spent Fuel Pool of a Nuclear Power Plant (사용후핵연료저장조의 확률론적안전성평가 수행을 위한 시스템엔지니어링 프로세스 적용 연구)

  • Choi, Jin Tae;Cha, Woo Chang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.82-90
    • /
    • 2021
  • The spent fuel pool (SFP) of a nuclear power plant functions to store the spent fuel. The spent fuel pool is designed to properly remove the decay heat generated from the spent fuel. If the cooling function is lost and proper operator action is not taken, the spent fuel in the storage pool can be damaged. Probabilistic safety assessment (PSA) is a safety evaluation method that can evaluate the risk of a large and complex system. So far, the probabilistic safety assessment of nuclear power plants has been mainly performed on the reactor. This study defined the requirements and the functional architecture for the probabilistic safety assessment of the spent fuel pool (SFP-PSA) by applying the systems engineering process. And, a systematic and efficient methodology was defined according to the architecture.

Three Phase Bone Scintigraphy in Active and Inactive Osteomyelitis (활동성 및 비활동성골수염에서의 삼상골신티그라피)

  • Yang, Woo-Jin;Chung, Soo-Kyo;Ha, Hyun-Kwon;Bahk, Yong-Whee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.22 no.2
    • /
    • pp.209-213
    • /
    • 1988
  • To Appreciate the value of bone scintigraphy in determination of the bony infection, we performed three phase bone scintigraphy in 34 cases of osteomyelitis of extremities prospectively. They were clinically inactive in 11 and active in 23 cases. We confirmed the active osteomyelitis by operation or aspiration within one week after scintigraphy. Perfusion, blood pool and delayed images were analyzed respectively and compared with the plain roentgenograms. All 23 active lesions showed diffusely increased perfusion in affected limbs. The areas of the increased activities on blood pool images were larger than or similar to those on delayed images in 17 cases (73.9%) with active osteomyelitis and smaller in 6 cases (26.1%). 5 of the latter 6 cases showed definite soft tissue activities on blood pool images. In inactive cases bone scintigrams were completely normal in 4 cases. Two of those were normal on plain films and remaining two showed mild focal bony sclerosis. Among 7 inactive lesions, perfusion was normal in 2 cases, diffusely increased in 4 cases and diffusely decreased in 1 case. 6 of these 7 cases showed increased activities both on blood pool and delayed images and the areas of increased activities on blood pool images didn't exceed those on delayed images. Bony sclerosis was noted on plain films in those 7 inactive lesions and the extent of the sclerosis correlated well to delayed images. Large blood pool activity was characteristics of active osteomyelitis. Normal three phase bone scintigram may indicate the time to terminate the treatment, but increased activity on perfusion and blood pool scans is not absolute indication of active lesion if the extent of the lesion on the blood pool image is smaller than that on delayed image and if no difinite soft tissue activity is noted on perfusion and blood pool images in clinically inactive patient.

  • PDF

Natural Convection Heat Transfer Characteristics of the Molten Metal Pool with Solidification by Boiling Coolant

  • Cho, Jae-Seon;Suh, Kune-Yull;Chung, Chang-Hyun;Park, Rae-Joon;Kim, Sang-Baik
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.719-725
    • /
    • 1997
  • This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. As a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232$^{\circ}C$. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation beかeon the Nusselt number and the Rayleigh number in the molten metal Pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer.

  • PDF

Evaluation of the Heat Conduction Model of Concrete Ground on Which LN2 Non-Spreading Pool Forms (비확산 액체질소 풀이 형성된 콘크리트 판의 열전도 모델 평가)

  • KIM, MYUNGBAE;NGUYEN, LE-DUY;CHUNG, KYUNGYUL;HAN, YONGSHIK;CHO, SUNGHOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.365-373
    • /
    • 2021
  • In this study, evaporation of LN2 non-spreading pool on concrete plate was dealt with experimentally. The thermophysical properties of concrete, which is a composite material, were obtained by minimizing the difference between the numerical analysis results obtained from the assumed properties and the results from experiments. The thermal energy required for evaporation of the liquid pool is supplied from the concrete plate and the wall of the container. As a result of the measurement, the thermal energy flowing in from the wall was negligible compared to the one supplied from the concrete plate. It was found that the measured evaporation rate of the liquid pool by the heat energy supplied through the concrete plate agrees well with the PTC model except for the initial section of the experiment. The validity of the semi-infinite assumption and the one-dimensional assumption, which are the main conditions of the PTC model, was also verified through experiments. The evaporation rate model in the non-spreading pool discussed in this study can provide a basic frame for the one in the spreading pool, which is a meaningful result considering that the spreading pool is very realistic compared to the non-spreading pool.