• Title/Summary/Keyword: POOL

Search Result 2,530, Processing Time 0.029 seconds

Database Connection Pool Architecture for User Interconnections Access (동시접속 사용자 접근을 고려한 데이터베이스 커넥션 풀 아키텍처)

  • Kim, Young-Chan;Kim, Tae-Gan;Lee, Se-Hoon;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.89-97
    • /
    • 2009
  • The use of database system in application increases day by day. This brought out the DBMS interconnection access problem with rapid increase of the user. To solve these database connection problem, database connection pool has been presented. However, there is much to be desired on user's interconnection access. To improve previous connection pool architecture, we have designed the sub connection pool besides main connection pool in this paper. We defined connection pool broker to manage both main and sub connection pool connection. When main connection pool reached its limitation, connection pool broker transfers a connection from a main connection pool to a sub connection pool. When the interconnection access user increased rapidly, we have proved that the suggested sub pool architecture is more effective on response time by comparing it with other existing DBMS connection pool architectures using simulation.

A Study on the Efficiency Improvement of Existing Pool-and-Weir Type Fishway in Namgang Weir (남강수중보의 기존 전면월류형 계단식 어도의 효율성 개선에 관한 연구)

  • Lee, Hyeong-Rae;Kim, Ki Heung;Park, Ho Chul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.2
    • /
    • pp.61-71
    • /
    • 2014
  • A river fishway is a hydraulic structure enabling fish to overcome stream obstructions such as dams and weirs. The main aim of this paper is to investigate the collectibility of upstream-migrating fishes and hydraulic problems in pool-and-weir type fishway which has been established for upstream-migration at Namgang weir in the downstream of Namgang dam, and to grope for improvement measures which pool-and-weir type fishway can be switched to pool-and-partial weir type fishway through hydraulic field experiment. Exsisting fishway had problems which upstream-migrating fishes can not take a rest due to the seiche and vortex phenomena in pools and migrate to upstream because of height difference in entrance pool. In order to prevent hydraulically the seiche and vortex phenomena and establish rest area for fishes in each pool, we carried out hydraulic field experiments. In the fishway, it was to improve pool-and-weir into pool-and-partil weir, to decrease the height difference in entrance pool, and to reduce oriffice velocity of each pool. Also, we investigated fishes collectibility of after improving fishway for 6 days in September 2013. To resolve chronic problems(seiche-vortex phenomena and rest area for fishes), as weirs were remodeled into partial weir only which central part of weirs was part of non-overflow weir, we confirmed results that pool-and-weir type fishway could be switched to efficient pool-and-partial weir type fishway with relatively simple construction and low cost. Type-B which has the closed oriffices and the parts of non-overflow has the ideal conditions, but this conditions are limited to fishway of Namgang weir used in this study. Representative Ice-habor type fishway is pool-and-partial weir type fishway which has together parts of overflow and oriffices, and has excellent ability of upstream-migration. To switch from pool-and-weir type fishway to pool-and-partial weir type fishway, the size of oriffice has to be regulated by the discharge of fishway and the dimension on parts of non-overflow and overflow in weirs. Entrance pool is important facility which upstream-migrating fishes have to not only be collect but also charge with energy. In this study, entrance-pool is temporary and roughly-built, but fishes gather together more than the case of no entrance-pool. In the case of fishway which was protruded to downstream, as entrance of fishway turns toward or parallels to weir, the collectibility of fishway was excellent by attraction water.

Study for Reduction Effect of Pool Top Radiation in Research Reactor by Using Ion Exchanger of Hot Water Layer (고온층계통의 이온교환기에 의한 연구로 수조 상부 방사선의 저감효과에 대한 연구)

  • Park, Yong-Chul;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.40-47
    • /
    • 1999
  • A hot water layer (HWL hereinafter) was installed at the depth of 1.2 m from the pool surface to reduce the radiation level at the pool top. After the HWL system was improved by the replacement of the filter with the Ion Exchanger to capture the Na-24, to purify the pool water of HWL and finally to reduce the radiation at the pool top. It was confirmed by the performance test of the pump and the measurement of the pressure difference through the Ion Exchanger and the strainer, that the flow characteristics of HWL system was not adversely affected after the system modification. Also the flow analysis using the pressure loss coefficients of the Ion Exchanger and strainer, calculated by the Darcy formula, could predict the flow variations by pressure changes within $10\%$ error in comparison with the field test results. It was also confirmed that HWL was maintained with the depth of 1.2 m from the pool surface because each electric water heater was electrically and thermodynamically maintained at 30 kW and the temperature of HWL was maintained with $5^{\circ}C$ higher temperature than that of pool water. Finally, it was confirmed that the pool top radiation was saturated and stabilized below 10000 nG/hr within 24 hours as the ion exchanger captured the main nucleus, Na-24 and purified the pool water of HWL.

  • PDF

Nationwide Inundation Analysis method for Flood and Storm Disaster Insurance Rate (풍수해보험요율 산정을 위한 전국단위 내수침수해석 방안)

  • Yoo, Jaehwan;Song, Juil;Jang, Moonyup;Kim, Hantae
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • This study suggested Nationwide Inundation Analysis method for Storm and Flood Damage Insurance Rate. Suggested modified Level-Pool method considers Zoning of urban plan to reflect real inundated area and limit inundation-boundary. Inundated area, as results of modified Level-Pool method, compared with inundation risk area on "storm and flood damage mitigation total plan". Simulated inundated area by modified Level-Pool method was more matched than results of traditional method. Therefore, modified Level-Pool method could be useful to analyze nationwide inundated area.

Control of weld pool sizes in GMA welding processes using neural networks (신경회로를 이용한 GMA 용접 공정에서의 용융지의 크기 제어)

  • 임태근;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.531-536
    • /
    • 1992
  • In GMA welding processes, monitoring and control of weld quality are extremely difficult problems. This paper describes a neural network-based method for monitoring and control of weld pool sizes. First, weld pool sizes are estimated via a neural estimator using multi-point surface temperatures, which are strongly related to the formation of weld pool, and then controlled using the estimated pool sizes. Two types of controllers using the pool size estimator are designed and tested. To evaluate the performance of the designed controllers, a series of simulation studies was performed.

  • PDF

On Basic Characteristics of A Pool Fire (Pool fire의 기본적 특성에 관하여)

  • 김명배
    • Fire Science and Engineering
    • /
    • v.11 no.1
    • /
    • pp.55-64
    • /
    • 1997
  • Pool fire는 본격적인 화재연구의 시작과 더불어 그 구조 및 특성에 대한 연구가 지속적으로 수행되어 왔다. Pool fire는 복잡하고 취급하기 어려운 화재의 제문제들을 비교적 간단하게 다룰수 있게 하면서도 현실과 괴리되지 않는 형태를 가지는 가장 기본적인 형태의 화재로, 학문적 측면뿐 아니라 응용측면에서도 매우 유용한 결과 및 단서를 제공하여 왔다. 따라서, 본고에서는 pool fire의 특성을 화염기저(flame base)부근과 플륨(plume)부근으로 나누어 그 동안 발표되었던 연구결과를 정리하고, 화재 시뮬레이션을 위한 zone 모델기법의 가장 중요한 부분의 하나인 연기량 산정과 플륨해석이 어떤 형태로 연결되는 지를 설명하고자 한다.

  • PDF

A Study of tow-Power Density Laser Welding Process with Evolution of me Surface (자유표면변형을 고려한 저에너지밀도 레이저 용접공정 해석)

  • Ha Eung-Ji;Kim Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1202-1209
    • /
    • 2004
  • In this study, numerical investigation has been performed on the evolution of weld pool geometry with moving free surface during low-energy density laser welding process. The free surface elevates near the weld pool edge and descends at the center of the weld pool if d$\sigma$/dT is dominantly negative. It is shown that the predicted weld pool width and depth with moving free surface are a little greater than those with flat weld pool surface. It is also believed that the weld pool surface oscillation during the melting process augments convective heat transfer rate in the weld pool. The present analysis with moving free surface should be considered when We number is very small compared to 1.0 since the deformation of the weld pool surface is noticeable as We number decreases.

Safety Classification of Systems, Structures, and Components for Pool-Type Research Reactors

  • Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1015-1021
    • /
    • 2016
  • Structures, systems, and components (SSCs) important to safety of nuclear facilities shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions. Although SSC classification guidelines for nuclear power plants have been well established and applied, those for research reactors have been only recently established by the International Atomic Energy Agency (IAEA). Korea has operated a pool-type research reactor (the High Flux Advanced Neutron Application Reactor) and has recently exported another pool-type reactor (Jordan Research and Training Reactor), which is being built in Jordan. Korea also has a plan to build one more pool-type reactor, the Kijang Research Reactor, in Kijang, Busan. The safety classification of SSCs for pool-type research reactors is proposed in this paper based on the IAEA methodology. The proposal recommends that the SSCs of pool-type research reactors be categorized and classified on basis of their safety functions and safety significance. Because the SSCs in pool-type research reactors are not the pressure-retaining components, codes and standards for design of the SSCs following the safety classification can be selected in a graded approach.

POOL MONITORING IN GMAW

  • Absi Alfaro, S.C.;de Carvallio, G.C.;Motta, J.M.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.307-313
    • /
    • 2002
  • This paper describes a weld pool monitoring technique, which is based on the weld pool image analysis. The proposed image analysis algorithm uses machine vision techniques to extract geometrical information from the weld pool image such as maximum weld pool width, gap width and misalignment between the joint longitudinal axis and the welding wire. These can be related to the welding parameters (welding voltage and current, wire feed speed and standoff) to produce control actions necessary to ensure that the required weld quality will be achieved. The experiments have shown that the algorithm is able to produce good estimates of the weld pool geometry; however, the adjustment of the camera parameters affects the image quality and, consequently, has a great influence over the estimation.

  • PDF

Discharge header design inside a reactor pool for flow stability in a research reactor

  • Yoon, Hyungi;Choi, Yongseok;Seo, Kyoungwoo;Kim, Seonghoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2204-2220
    • /
    • 2020
  • An open-pool type research reactor is designed and operated considering the accessibility around the pool top area to enhance the reactor utilization. The reactor structure assembly is placed at the bottom of the pool and filled with water as a primary coolant for the core cooling and radiation shielding. Most radioactive materials are generated from the fuel assemblies in the reactor core and circulated with the primary coolant. If the primary coolant goes up to the pool surface, the radiation level increases around the working area near the top of the pool. Hence, the hot water layer is designed and formed at the upper part of the pool to suppress the rising of the primary coolant to the pool surface. The temperature gradient is established from the hot water layer to the primary coolant. As this temperature gradient suppresses the circulation of the primary coolant at the upper region of the pool, the radioactive primary coolant rising up directly to the pool surface is minimized. Water mixing between these layers is reduced because the hot water layer is formed above the primary coolant with a higher temperature. The radiation level above the pool surface area is maintained as low as reasonably achievable since the radioactive materials in the primary coolant are trapped under the hot water layer. The key to maintaining the stable hot water layer and keeping the radiation level low on the pool surface is to have a stable flow of the primary coolant. In the research reactor with a downward core flow, the primary coolant is dumped into the reactor pool and goes to the reactor core through the flow guide structure. Flow fields of the primary coolant at the lower region of the reactor pool are largely affected by the dumped primary coolant. Simple, circular, and duct type discharge headers are designed to control the flow fields and make the primary coolant flow stable in the reactor pool. In this research, flow fields of the primary coolant and hot water layer are numerically simulated in the reactor pool. The heat transfer rate, temperature, and velocity fields are taken into consideration to determine the formation of the stable hot water layer and primary coolant flow. The bulk Richardson number is used to evaluate the stability of the flow field. A duct type discharge header is finally chosen to dump the primary coolant into the reactor pool. The bulk Richardson number should be higher than 2.7 and the temperature of the hot water layer should be 1 ℃ higher than the temperature of the primary coolant to maintain the stability of the stratified thermal layer.