• Title/Summary/Keyword: POLYMER

Search Result 16,677, Processing Time 0.048 seconds

Bone formation of newly developed biphasic calcium phosphate in rabbit calvarial defect model : A pilot study (토끼 두개골에서 새로 개발된 biphasic calcium phosphate의 골형성 효과 : A pilot study)

  • Um, Yoo-Jung;Hong, Ji-Yeon;Kim, Sung-Tae;Lee, Yong-Ho;Park, Sang-Hyun;Park, Sun-Hyo;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.163-170
    • /
    • 2008
  • Purpose: Biphasic calcium phosphates have been of great interest recently. Mixing adequate ratios of hydroxyapatite(HA) and beta-tricalcium phosphate($\beta$-TCP) allowed to control the resorption rate without distorting its osteoconductive property. This study evaluated the bone formation effect of newly developed biphasic calcium phosphate(BCP) in calvarial defect of rabbits. Materials and Methods: 6 male New Zealand rabbits were used. Four defects with 8mm in diameter were created on each animal. BCP with HA/$\beta$-TCP ratio of 7:3 and particle size of $0.5{\sim}1.0\;mm$ was used as the test group and bovine bone with $0.25{\sim}1.0\;mm$ particle size, as the control group. Both test and control group materials were randomly implanted in the calvarial defects and were covered witha polymer membrane. The animals were sacrificed after 12, 24, and 48 weeks of implantation under general euthanasia. Resin blocks were obtained and were stained by masson's trichrome for histological observation. Results: Overall results were uneventful without any defect exposure or inflammation. The amount of new bone formation and bone maturity increased with increase in healing period at both groups. New bone in test group was mostly formed along the material particle surrounded by osteoblasts, and observation of osteoblastic stream was also present. Bone maturity increased as it was closer to thedefect margins. Under the same healing period, the test group showed more bone formation than the control group with more stable bovine bone particles remaining even after 48 weeks, whereas considerable resorption took place in BCP. Almost total defect closure was observed in test group with new bone formation in the central part of the defect. However, limited new bone formation was observed in the control group. Conclusion: Within the limits of the study, the present study reveals the newly developed BCP to be a good osteoconductive material. However, further studies are needed to be conducted in a different study model with a larger sample size.

Creep Behavior of Pultruded Ribbed GFRP Rebar and GFRP Reinforced Concrete Member (인발성형된 이형 GFRP 보강근과 GFRP 보강 콘크리트 부재의 크리프 거동)

  • You, Young-Jun;Park, Young-Hwan;Kim, Hyung-Yeol;Choi, Jin-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.187-194
    • /
    • 2013
  • Fiber reinforced polymer (FRP) has been gathering interest from designers and engineers for its possible usage as a replacement reinforcement of a steel reinforcing bar due to its advantageous characteristics such as high tensile strength, non-corrosive material, etc. Since it is manufactured with various contents ratios, fiber types, and shapes without any general specification, test results for concrete members reinforced with these FRP reinforcing bars could not be systematically used. Moreover, since investigations for FRP reinforced members have mainly focused on short-term behavior, the purpose of this study is to evaluate long-term behaviors of glass FRP (GFRP) reinforcing bar and concrete beams reinforced with GFRP. In this paper, test results of tensile and bond performance of GFRP reinforcing bar and creep behavior are presented. In the creep tests, results showed that 100 years of service time can be secured when sustained load level is below 55% of tensile strength of GFRP reinforcing bar. A modification factor of 0.73 used to calculate long-term deflection of GFRP reinforced beams was acquired from the creep tests for GFRP reinforced concrete beams. It is expected that these test results would give more useful information for design of FRP reinforced members.

The study for fabrication and characteristic of Li$_2$O-2SiO$_2$conduction glass system using conventional and microwave energies (마이크로파와 재래식 열원을 이용한 고체 전지용 Li$_2$O-2SiO$_2$계 전도성 유리의 제조 및 특성에 관한 연구)

  • Park, Seong-Soo;Kim, Kyoung-Tae;Kim, Byoung-Chan;Park, Jin;Park, Hee-Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.66-72
    • /
    • 2000
  • The behavior of nucleation and crystallization in the $Li_2O_3-SiO_2$ glass heat-treated at different condition under the conventional and microwave processing was studied by differential thermal analysis (DTA), X-ray diffractometry (XRD), optical microscopy (OM), and electrical conductivity measurement. Nucleation temperature and temperature of maximum nucleation rate in both conventionally and microwave heat-treated samples were 460~$500^{\circ}C$ and $580^{\circ}C$, respectively. It was expected that the probability for bulk crystallization increased in microwave heat-treated sample, compared to conventionally heat-treated one. Degree of crystallization increased with increasing crystallization temperature in both conventionally and microwave heat-treated samples. However, pattern of crystallization growth under microwave processing appeared to be quite different from that under the conventional one due to its internal or volumetric heating. Electrical conductivity of conventionally and microwave heat-treated samples were 1.337~2.299, 0.281~~$0.911{\times}10^{-7}\Omega {\textrm}{cm}^{-1}$, respectively.

  • PDF

Case History of Sea Dyke Filter Construction Using Geotextile Tube Mattress (튜브형 매트리스를 활용한 방조제 필터공 축조사례연구)

  • Oh, Young-In;Yoo, Jeon-Yong;Kim, Hyun-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2007
  • Geotextile is one of the most useful and effective polymer material in civil construction works and the main function of geotextile is separation, reinforcement, filtering and drainage. Recently, because of the shortage of natural rock, traditional forms of river and coastal structures have become very expensive to build and maintain. Therefore, the materials used in hydraulic and coastal structures are changing from the traditional rubble and concrete systems to the cheaper materials and systems. One of these alternatives employs geotextile tube technology in the construction of coastal and shore protection structures, such as embankment, see dyke, groins, jetties, detached breakwaters and so on. Geotextile tube technology has changed from being an alternative construction technique and, in fact, has advanced to become the most effective solution of choice. This paper presents case history of sea dyke filter construction using geotextile tube mattress and also, various issues related to the tube mattress design and construction technology.

  • PDF

Effects of Seawater & Freshwater Soaking on the Cure Properties of Accelerated Thermally Aged CSPE (가속열화 된 CSPE의 경화특성에 미치는 해수 담수 침지의 영향)

  • Shin, Yong-Deok;Lee, Jeong-U
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.819-824
    • /
    • 2016
  • The accelerated thermal aging of CSPE (chlorosulfonated polyethylene) was carried out for 33.64 and 67.27 days at 110[$^{\circ}C$], equivalent to 40 and 80 years of aging at 50[$^{\circ}C$], respectively. These samples were referred to as CSPE-0y, CSPE-40y and CSPE-80y, respectively. As the accelerated thermally aged years of the CSPE increase, the insulation resistance[$\Omega$] at 20[Hz], 500[Hz], and 2[KHz], and the percent elongation [%EL] of the CSPE decrease. However, the dissipation factor($tan{\delta}$) at 20[Hz], 500[Hz], and 2[KHz], the apparent density[$g/cm^3$], the glass transition temperature and the melting temperature of the CSPE were increased. The period of time that the voltage has to be applied until electric breakdown of the CSPE-0y is longer than that of the CSPE-40y, and the CSPE-80y, but the dielectric strength of the CSPE-80y is lower than that of the CSPE-0y and the CSPE-40y. The differential temperatures after the AC and DC voltages are applied to CSPE-0y, CSPE-40y and CSPE-80y are 0.026~0.028[$^{\circ}C$], 0.030~0.042[$^{\circ}C$], 0.018~0.045[$^{\circ}C$], respectively. The variations of temperature for the AC voltage are higher than those for the DC voltage when an AC voltage is applied to CSPE-0y, CSPE-40y and CSPE-80y. It is found that the dielectric loss owing to the dissipation factor[$tan{\delta}$] is related to the electric dipole conduction current. It is ascertained that the ionic (electron or hole) leakage current is increased by the separation of the branch chain of CSPE polymer from the main chain of the polyethylene as a result of thermal stress due to accelerated thermal aging as well as by conducting ions such as $Na^+$, $Cl^-$, $Mg^{2+}$, $SO_4^{2-}$, $Ca^{2+}$ and $K^+$ after seawater soaking.

Synthesis of ZSM-5 on the Surface of Foam Type Porous SiC Support (폼 형태의 다공성 탄화규소 지지체 표면 위에 ZSM-5 합성)

  • Jung, Eunjin;Lee, Yoon Joo;Won, Ji Yeon;Kim, Younghee;Kim, Soo Ryong;Shin, Dong-Geun;Lee, Hyun Jae;Kwon, Woo Teck
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.425-430
    • /
    • 2015
  • ZSM-5 crystals grew by hydrothermal synthesis method on the surface of foam type porous silicon carbide ceramics which fabricated by polymer replica method. Oxide layer was developed on the surface of the porous silicon carbide ceramics to induce growth of ZSM-5 from the surface. In this study, hydrothermal synthesis was carried out for 7 h at $150^{\circ}C$ using TEOS, $Al(NO_3){\cdot}9H_2O$ and TPAOH as raw materials in the presence of the porous silicon carbide ceramics. X-ray Powder Diffraction (XRD) and Scanning Electron Microscope (SEM) analyses were confirmed $1{\sim}3{\mu}m$ sized ZSM-5 crystals have grown on the surface of porous silicon carbide ceramics. BET data shows that small pores about $10{\AA}$ size drastically enhanced and surface area increased from $0.83m^2/g$ to $30.75m^2/g$ after ZSM-5 synthesis on the surface of foam type porous silicon carbide ceramics.

Preparation and Characterization of Antimicrobial Films Using Water Soluble Polymer (수용성 고분자를 이용한 항균 필름의 제조 및 특성 연구)

  • Choi, Jun Ho;Choi, Yoo Sung;Oh, Il Hong;Kim, Maeng Su;Lee, In Hwa
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • This study was performed to develop antimicrobial films using polyvinyl alcohol and methyl cellulose. Methyl cellulose and polyvinyl alcohol films plasticized with PEG(polyethylene glycol) were prepared by solvent casting process under addition of 0.025~1.0 wt% ampicillin and 0.1~1.0 wt% streptomycin as an antimicrobial agent. The mechanical properties of prepared films were examined by universal testing machine(UTM). Tensile strength of methyl cellulose films was 15.44~21.70 $N/mm^2$. Tensile strength of PVA(15 wt%) film was 20.2~51.5 $N/mm^2$, and the tensile strength of the antimicrobial films were decreased linearly with increasing the antibiotic loading amount up to 1 wt%. Antimicrobial activities of PVA and methyl cellulose films containing ampicillin and streptomycin through the disc diffusion test for the Staphylococcus aureus and Escherichia coli. The antimicrobial activity of methyl cellulose films and PVA containing ampicillin were higher than that of containing streptomycin methyl cellulose films. The results indicate the films may be a proper materials for antimicrobial packing applications.

Preparation of Chitosan/Poly-${\gamma}$-glutamic Acid Nanoparticles and Their Application to Removal of Heavy Metals (키토산/폴리감마글루탐산 나노입자의 제조 및 중금속 제거에의 응용)

  • Sung, Ik-Kyoung;Song, Jae Yong;Kim, Beom Soo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.475-479
    • /
    • 2011
  • Chitosan is a natural polymer that has many physicochemical(polycationic, reactive OH and $NH_2$ groups) and biological(bioactive, biocompatible, and biodegradable) properties. In this study, chitosan nanoparticles were prepared using poly-${\gamma}$-glutamic acid(${\gamma}$-PGA) as gelling agent. Nanoparticles were formed by ionic interaction between carboxylic groups in ${\gamma}$-PGA and amino groups in chitosan. Chitosan(0.1~1 g) was dissolved in 100 ml of acetic acid (1% v/v) at room temperature and stirred overnight to ensure a complete solubility. An amount of 0.1 g of ${\gamma}$-PGA was dissolved in 90 ml of distilled water at room temperature. Chitosan solution was dropped through needle into beaker containing ${\gamma}$-PGA solution under gentle stirring at room temperature. The average particle sizes were in the range of 80~300 nm. The prepared chitosan/${\gamma}$-PGA nanoparticles were used to examine their removal of several heavy metal ions($Cd^{2+}$, $Pb^{2+}$, $Zn^{2+}$, $Cu^{2+}$, and $Ni^{2+}$) as adsorbents in aqueous solution. The heavy metal removal capacity of the nanoparticles was in the order of $Cu^{2+}$ > $Pb^{2+}$ > $Cd^{2+}$ > $Ni^{2+}$ > $Zn^{2+}$.

Mechanical and Morphological Properties of Poly(acrylonitrile-butadiene-styrene) and Poly(lactic acid) Blends (아크릴로니트릴-부타디엔-스티렌 공중합체와 폴리유산과의 블렌드에 대한 기계적 물성 및 모폴로지)

  • Lee, Yun Kyun;Kim, Ji Mun;Kim, Woo Nyon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.438-442
    • /
    • 2011
  • Mechanical and morphological properties of poly(acrylonitrile-butadiene-styrene) (ABS) and poly(lactic acid) (PLA) blends containing compatibilizers were investigated. Poly(styrene-acrylonitrile)-g-maleic anhydride) (SAN-g-MAH), poly(ethylene-co-octene) rubber-maleic anhydride (EOR-MAH) and poly(ethylene-co-glycidyl methacrylate) (EGMA) were used as compatibilizers. Mechanical properties such as tensile, flexural and impact strengths of ABS/PLA (80/20, wt%) blends were found to be increased when the SAN-g-MAH, EOR-MAH and EGMA were used. The maximum values for mechanical properties of the ABS/PLA (80/20) blend were observed when SAN-g-MAH was used as a compatibilizer at the concentration of 3 phr. From morphological studies of the ABS/PLA (80/20) blends, PLA droplet size was decreased by the addition of the compatibilizers used in this study. From the results of mechanical and morphological properties of the ABS/PLA (80/20) blends, SAN-g-MAH (3 phr) was found to be the most effective compatibilizer among the compatibilizers used in this study.

Pervaporation of Butanol from their Aqueous Solution using a PDMS-Zeolite Composite Membrane (PDMS-Zeolite 복합막을 이용한 부탄올 투과증발)

  • Kong, Chang-In;Cho, Moon-Hee;Lee, Yong-Taek
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.816-822
    • /
    • 2011
  • Pervaporation is known to be a low energy consumption process since it needs only an electric power to maintain the permeate side in vacuum. Also, the pervaporation is an environmentally clean technology because it does not use the third material such as an entrainer for either an azeotropic distillation or an extractive distillation. In this study, Silicalite-1 particles are hydrothermally synthesized and polydimethylsiloxane(PDMS)-zeolite composite membranes are prepared with a mixture of synthesized Silicalite-1 particles and PDMS-polymer. They are used to separate n-butanol from its aqueous solution. Pervaporation characteristics such as a permeation flux and a separation factor are investigated as a function of the feed concentration and the weight % of Silicalite-1 particles in the membrane. A 1,000 $cm^3$ aqueous solution containing butanol of low mole fraction such as order of 0.001 was used as a feed to the membrane cell while the pressure of the permeation side was kept about 0.2~0.3 torr. When the butanol concentration in the feed solution was 0.015 mole fraction, the flux of n-butanol significantly increased from 14.5 g/ $m^2$/hr to 186.3 g/$m^2$/hr as the Silicalite-1 content increased from 0 wt% to 10 wt%, indicating that the Silicalite-1 molecular sieve improved the membrane permselectivity from 4.8 to 11.8 due to its unique crystalline microporous structure and its strong hydrophobicity. Consequently, the concentration of n-butanol in the permeate substantially increased from 0.07 to 0.15 mole fraction. This composite membrane could be potentially appliable for separation of n-butanol from insitu fermentation broth where n-butanol is produced at a fairly low concentration of 0.015 mole fraction.