• Title/Summary/Keyword: POLLUTANTS

Search Result 4,217, Processing Time 0.032 seconds

Contamination of the Mushim-Cheon and its Countermeasure;II. The Status of the Seasonal and Hourly Contamination of the Water(1989${\sim}$1990)-Temperature, pH, DO, BOD, COD, SS, Turbidity, and BOD Load (무심천(無心川) 수질(水質) 오염(汚染) 실태(實態)와 그 방지책(防止策);II. 계절별(季節別) 및 시간별(時間別) 현황(現況) (1989-1990)-수온, pH, DO, BOD, COD, SS, 탁도 및 BOD 부하량(負荷量))

  • Lee, Jae-Koo;Kim, Hak-Nam;Kyung, Kee-Sung;Kwak, Hee-In
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.1
    • /
    • pp.33-49
    • /
    • 1991
  • In order to disclose the contamination of the Mushim-Cheon by pollutants and to establish the countermeasures, the water samples collected in November of 1989(lst sample), February(2nd), May(3rd) and August of 1990(4th) were analyzed to obtain the following results : 1. The water temperatures of the seasonal samples ranged from 8.6 to 16.2, 8.3 to 25.2, 18 to 26, and 24 to 32$^{\circ}C$, in the 1st, 2nd , 3rd, and 4th samples, respectively. 2. The pHs of all the samples ranged from 6.5 to 8.5. 3. In the 3rd sample, especially, DO was observed to fall down to 0.8 ppm at the downstream of St 13, which is not allowed even for agricultural use. 4. The BOD and COD values in sewers were much higher than those in the main stream, and especially the values of St 14-A reached 107-608 and 176-635 ppm, respectively, which far exceeded the limit of 40 ppm, the allowed value for the discharges from the disposal facilities. The SS value of St 14A ranged from 142 to 1, 900 ppm, which far exceeded the limit of 70 ppm, the allowed value for the discharges from the disposal facilities. 5. It turned out that the water quality of the Mushim-Cheon flowing through Cheong Ju was more worsened at sewers than the main stream, and at the downstream than the upstream of the surveyed area. Accordingly, the sewage disposal plant and the expansion of the disposal facilities are urgently needed.

  • PDF

A Study on the Forest Vegetation and Soil-environmental Factors Affecting the Water Quality of Iwonch on Stream (이원천 수질에 미치는 삼림식생과 토양환경요인)

  • Bang, Je-Yong;Yang, Keum-Chul
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.2
    • /
    • pp.183-190
    • /
    • 2009
  • Characterization of the analysis of forest vegetation, soil environmental conditions and water quality were performed from March 2003 to March 2007. The two basins were characterized by cultivated area (Kaesim reservoir) and mountain area (Jangchan reservoir), and divided into eleven small basins, where dynamics of pollutants, forest vegetation and soil environmental conditions were surveyed. The vegetation can be divided into 10 types by $Z\ddot{u}rich$-Montpellier school's method. Pearson coefficients between vegetation type and water quality were correlated with dissolved oxygen (DO) in the Quercus variabilis community at the 5% level and total phosphorus (TP) in the Larix leptolepis plantation at the 1% level. Especially total phosphorous and total nitrogen increased in small basins where the proportion of cultivated and residential area increased. The analysis of influences of pollutant discharge on water quality showed that pollutant charge was very low in forest land area ($Y_{T-P}$=-0.0017X+0.2215, r=0.16, $Y_{COD}$=- 0.0395X+8.5051 r=0.47). The soil types of western area were comparatively simple, but those of eastern area were complicated with regosols, red-yellow soils, lithosoles, etc. The pH, total solid (TS) and volatile substance (VS) of the forest and agricultural land soils collected in each site were 5.4~6.9, 75.8~80.2%, and 3.80%~5.80%, respectively. According to the analytical result of soil environmental conditions, heavy metal contents fell short to the mean value of natural conditions. Runoff amount (Y) and depth of topsoil (X) were negatively correlated, $Y_{ron}=-1.0088X_{top}+35.378$ (r=0.68). The correlation was much lower in up-stream but much higher in down-stream, because permeation into soil particle was larger on down-stream due to its more or less gentle slope. Pearson coefficients between soil pH and water pH were statistically significant at 1% level.

The effects of microplastics on marine ecosystem and future research directions (미세플라스틱의 해양 생태계에 대한 영향과 향후 연구 방향)

  • Kim, Kanghee;Hwang, Junghye;Choi, Jin Soo;Heo, Yunwi;Park, June-Woo
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.625-639
    • /
    • 2019
  • Microplastics are one of the substances threatening the marine ecosystem. Here, we summarize the status of research on the effect of microplastics on marine life and suggest future research directions. Microplastics are synthetic polymeric compounds smaller than 5 mm and these materials released into the environment are not only physically small but do not decompose over time. Thus, they accumulate extensively on land, from the coast to the sea, and from the surface to the deep sea. Microplastic can be ingested and accumulated in marine life. Furthermore, the elution of chemicals added to plastic represents another risk. Microplastics accumulated in the ocean affect the growth, development, behavior, reproduction, and death of marine life. However, the properties of microplastics vary widely in size, material, shape, and other aspects and toxicity tests conducted on several properties of microplastics cannot represent the hazards of all other microplastics. It is necessary to evaluate the risks according to the types of microplastic, but due to their variety and the lack of uniformity in research results, it is difficult to compare and analyze the results of previous studies. Therefore, it is necessary to derive a standard test method to estimate the biological risk from different types of microplastics. In addition, while most of the previous studies were conducted mostly on spheres for the convenience of the experiments, they do not properly reflect the reality that fibers and fragments are the main forms of microplastics in the marine environment and in fish and shellfish. Furthermore, studies have been conducted on additives and POPs (persistent organic pollutants) in plastics, but little is known about their toxic effects on the body. The effects of microplastics on the marine ecosystems and humans could be identified in more detail if standard testing methods are developed, microplastics in the form of fibers and fragments rather than spheres are tested, and additives and POPs are analyzed. These investigations will allow us to identify the impact of microplastics on marine ecosystems and humans in more detail.

Eutrophication in the Upper Regions of Brackish Lake Sihwa with a Limited Water Exchange (물 교환이 제한적인 시화호 상류 기수역의 부영양화)

  • Choi, Kwnag-Soon;Kim, Sea-Won;Kim, Dong-Sup;Heo, Woo-Myoung;Lee, Yun-Kyoung;Hwang, In-Seo;Lee, Han-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.216-227
    • /
    • 2008
  • To understand eutrophication in the upper regions of brackish Lake Sihwa with a limited water exchange, temporal and spatial distributions of pollutants in water and sediment were investigated from March to October in 2005 and 2006. Also, pollution levels of water and sediment were estimated by trophic state index (TSI) and sediment quality guideline (SQG). Total nitrogen (TN), total phosphorus (TP), organic matter (COD), and chlorophyll $\alpha$ (Chl-$\alpha$) concentrations in the surface waters were largely varied temporally and spatially, and the variations were highest in the middle areas where strong halocline was formed. Chl-$\alpha$ concentrations in the middle area were very high in April (>$900\;{\mu}g\;L^{-1}$) when algal blooms (red tides) occurred. The relationships between TN and Chl-$\alpha$ (r=0.31), and TP and Chl-$\alpha$ (r=0.65) indicated that the algal growth was primarily affected by phosphorus rather than nitrogen. The distribution of COD was similar to that of Chl-$\alpha$, indicating that the autochthonous organic matters may be a more important carbon source, especially in the middle areas. The brackish water regions were classified as eutrophic or hypertrophic based on their TSI values ($69{\sim}76$). In addition, the content of nutrients (especially TP) in surface sediments were classified as severe polluted state, except the upper areas. Major causes of the eutrophication observed were probably due to high nutrients loading from watersheds, the phosphorus release from anaerobic sediment, and long retention time by the limited water exchange through the sluice gates.

Rainfall and Hydrological Comparative Analysis of Water Quality Variability in Euiam Reservoir, the North-Han River, Korea (북한강 의암호의 수질 변동성에 대한 강우·수문학적 비교분석)

  • Hwang, Soon-Jin;Sim, Yeon Bo;Choi, Bong-Geun;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Park, Myung-Hwan;Lee, Su-Woong;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.29-45
    • /
    • 2017
  • This study explored spatiotemporal variability of water quality in correspondence with hydro-meteorological factors in the four stations of Euiam Reservoir located in the upstream region of the North-Han River from May 2012 to December 2015. Seasonal effect was apparent in the variation of water temperature, DO, electric conductivity and TSS during the study period. Stratification in the water column was observed in the near dam site every year and vanished between August and October. Increase of nitrogen nutrients was observed when inflowing discharge was low, while phosphorus increase was distinct both during the early season with increase of inflowing discharge and the period of severe draught persistent. Duration persisting high concentration of Chl-a (>$25mg\;m^{-3}$: the eutrophic status criterion, OECD, 1982) was 1~2 months of the whole year in 2014~2015, while it was almost 4 months in 2013. Water quality of Euiam Reservoir appeared to be affected basically by geomorphology and source of pollutants, such as longitudinally linked instream islands and Aggregate Island, inflowing urban stream, and wastewater treatment plant discharge. While inflowing discharge from the dams upstream and outflow pattern causing water level change seem to largely govern the variability of water quality in this particular system. In the process of spatiotemporal water quality change, factors related to climate (e.g. flood, typhoon, abruptly high rainfall, scorching heat of summer), hydrology (amount of flow and water level) might be attributed to water pulse, dilution, backflow, uptake, and sedimentation. This study showed that change of water quality in Euiam Reservoir was very dynamic and suggested that its effect could be delivered to downstream (Cheongpyeong and Paldang Reservoirs) through year-round discharge for hydropower generation.

Composition and emission characteristics of fine particulate matters at the 1100 Site of Mt. Halla during 2011-2012 (한라산 1100고지 대기 미세먼지의 조성 및 배출 특성: 2011~2012년 측정)

  • Song, Jung-Min;Bu, Jun-Oh;Kim, Won-Hyung;Ko, Hee-Jung;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.209-218
    • /
    • 2016
  • PM10 and PM2.5 samples were collected at the 1100 site of Mt. Halla in Jeju Island during 2011~2012, and their ionic and elemental species were analyzed, in order to investigate the characteristics of emission sources as well as aerosol compositions. The mass concentrations of PM10 and PM2.5 were 22.0±13.1 µg/m3 and 11.3±6.1 µg/m3, respectively, showing 2.4~2.6 times lower than those of the capital city area of Korea. The composition ratios of major secondary pollutants (nss-SO42−, NH4+, and NO3) were the highest as 85.5 % for PM10 and 91.3 % for PM2.5, and followed by the order of marine (Na+, Cl, and Mg2+), organic acid (HCOO and CH3COO), and soil (nss-Ca2+) sources. Among the elemental species in PM10, soil-originated components (Al, Fe, and Ca) were consisted of 50.9 %, which was higher proportion than marine and anthropogenic elements. The acidification of the fine particulate matters was found to be influenced mostly by sulfuric and nitric acids, and these acids were mainly neutralized by calcium carbonate in PM10 and by ammonia in PM2.5. The clustered back trajectories showed that 47 % of total air mass inflows was from the China, and the concentrations of NO3 and nss-Ca2+ were especially high corresponding to the inflows.

Removal and Release Velocities of Nutrients by Submerged Plants in Flood Control Reservoirs around Juam Lake (주암호 홍수조절용지내 침수 식물체의 영양염류 제거속도 및 용출속도)

  • Han, Jong-Hak;Seo, Dong-Cheol;Kim, Sang-Don;Kang, Se-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Kim, Hyun-Ook;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.144-152
    • /
    • 2011
  • BACKGROUND: Eutrophication occurs occasionally in flood control reservoirs around Juam lake in summer and early autumn. Lakeside macrophyte which is one of internal pollutants effects on water quality when it is submerged during water surface is rising after rainy season. METHODS AND RESULTS: To improve water the quality of water from water supply source and to establish the management plan of submerged plants in flood control reservoirs around Juam Lake, the removal and release velocities of nutrients by submerged plants in site 1 and 2 were investigated. Removal or release velocity constant (K) of COD by Carex dimorpholepis Steud in column was 0.07~0.18 $day^{-1}$ at 0~4 days after flooding, -0.23~-0.17 $day^{-1}$ at 5~19 days after flooding and -0.28~0.03 $day^{-1}$ at 20~33 days after flooding. Removal or release velocity constant (K) of T-N by Carex dimorpholepis Steud was 0.02 $day^{-1}$ at 0~4(8) days after flooding, -0.13~-0.10 $day^{-1}$ at 5(9)~33 days after flooding in column. Removal or release velocity constant (K) of T-P by Carex dimorpholepis Steud was 0.05~0.06 $day^{-1}$ at 0~4 days after flooding, -0.14~-0.09 $day^{-1}$ at 5~33 days after flooding. Release velocity constant (K) of nutrients by Miscanthus sacchariflorus Benth was lower than that by Carex dimorpholepis Steud. In site 1, the amount of nutrients release by Carex dimorpholepis Steud was 6,719 kg/month/area for COD, 2,397 kg/month/area for T-N and 466 kg/month/area for T-P. The amounts of nutrients release by Carex dimorpholepis Steud were higher than those by Miscanthus sacchariflorus Benth in both sites. CONCLUSION(s): The results of this study suggest that COD, T-N and T-P in water quality of Juam lake were strongly influenced by submerged plants in flood control reservoirs.

Study on Biochemical Pollutant Markers for Diagnosis of Marine Pollution I. Changes in Lipid Components of Flounder (Paralichthys olivaceus) in the Yellow Sea (해양오염의 진단을 위한 생화학적 오염지표에 관한 연구 I. 황해산 넙치 (Paralichthys olivaceus)의 지질성분의 변화)

  • Choi, Jin-Ho;Kim, Dong-Woo;Moon, Young-Sil;Park, Chung-Kil;Kim, Jae-II;Yang, Dong-Beom
    • Journal of Life Science
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 1997
  • For the recent years, considerable efforts have been made to rationalize the techniques of research and monitoring of biological effects of marine pollutants such as heavy metals, polychlorinate biphenyls (PCBs), organochlorine pesticides, polycyclic aromatic hydrocarbons (PAHs), organophosphorus pesticides. This study was designed as a part of efforts to investigate the biochemical pollutant markers for diagnosis of marine pollutions by the changes in lipid components of the flounder (Paralichthys olivaceus) in Yellow Sea of Korea. Homoglobin levels in serum of cultured and wild flounders in Yellow Sea were significantly lower (5 - 15% and 20 -25 % , respectively) than those of wild flounder in Pohang. Triglyceride (TG) contents in serum of cultured flounders in Yellow Sea were 10 - 40% higher than those of wild flounder in Pohang. Total and low density lipoprotein (LDL)-cholesterol contents in serum of flounders in Yellow Sea were significantly 10-15% and 30-35% (cultured), and 10-20% (wild), respectively, higher than those of wild flounder in Pohang. Atherogenic index (AI) and T-Chol/PL rations in serum of cultured and wild flounders in Yellow sea were significantly 20-45% and 10-!5%, 6-35% and 15-35%, respectively, higher than those of wild flounder in pohang. These results suggest that near-coastal waters as well as neritic waters of the Yellow Sea might be affected by pollutant input.

  • PDF

A Study on the Measurement of the Dimensionless Light Extinction Constant for Particulate Matter from Fuel Oil for Marine and Land Diesel Engines (선박 및 육상 디젤 엔진용 연료유에서 발생하는 입자상물질에 대한 무차원 광소멸계수 계측에 관한 연구)

  • Rho, Beom-Seok;Choi, Jae-Hyuk;Cho, Kwon-Hae;Park, Seul-Hyun;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.275-281
    • /
    • 2018
  • It is known that he pollutant emitted from the combustion process of marine fuel oil causes air pollution and harmful effects to the human body. Accordingly, IMO regulates pollutants emitted from ships. However, the regulation of Particulate Matter (PM) is still in the process of debate, so preemptive action is needed. Fundamental research on PM is essential. In this study, the Dimensionless Light Extinction Constant ($K_e$) of fuel oil used in marine diesel engines was measured and analyzed to construct the basic data of the PM generated from marine-based fuel oil. The fuel oil used in the land diesel engine was measured in the same way for character comparison. Both fuel oils differ in sulfur content and density. The $K_e$ was measured via the optical method using a 633 nm laser and was determined by using the volume fraction of PM collected by the gravimetric filter method. The $K_e$ of the PM discharged from marine fuel oil is 8.28, and the land fuel oil is 8.44. The $K_e$ of two fuel oils was similar within the measurement uncertainty range. However, it was found by comparison with the value obtained by the Rayleigh-Limit solution that the light scattering portion could be large. Also, it was found that light extinction characteristics could be different due to the relationship between light transmittance and collected mass.

Effect of Steam-Treated Zeolite BEA Catalyst in NH3-SCR Reaction (NH3-SCR 반응에서 스팀 처리된 zeolite BEA 촉매의 영향)

  • Park, Ji Hye;Cho, Gwang Hee;Hwang, Ra Hyun;Baek, Jeong Hun;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.145-150
    • /
    • 2020
  • Nitrous oxide (N2O) is one of the six greenhouse gases, and it is essential to reduce N2O by showing a global warming potential (GWP) equivalent to 310 times that of carbon dioxide (CO2). Selective catalytic reduction (SCR) is a technology that converts ammonia into harmless N2 and H2O by using ammonia as a reducing agent to remove NOx, one of the air pollutants; the process also produces high denitrification efficiency. In this study, the Fe-BEA catalyst was steam-treated at 100 ℃ for 2 h before Fe ion exchange in the fixed bed reactor in order to investigate the effect of the steam-treated Fe-BEA catalyst on the NH3-SCR reaction. NH3-SCR reaction test of synthesized catalysts was performed at WHSV = 180 h-1, 370 to 400 ℃ in the fixed bed reactor. The Fe-BEA(100) catalyst steam-treated at 100 ℃ showed a somewhat higher activity than the Fe-BEA catalyst at 370 to 390 ℃. The catalysts were characterized by BET, ICP, NH3-TPD, H2-TPR, and 27Al MAS NMR in order to determine the cause affecting NH3-SCR activity. The H2-TPR result confirmed that the Fe-BEA(100) catalyst had a higher reduction of isolated Fe3+ than the Fe-BEA catalyst, and that the steam treatment increased the amount of isolated Fe3+ as an active species, thus increasing the activity.