• Title/Summary/Keyword: POD analysis

Search Result 213, Processing Time 0.024 seconds

Investigation on the nonintrusive multi-fidelity reduced-order modeling for PWR rod bundles

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Chu, Tianhui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1825-1834
    • /
    • 2022
  • Performing high-fidelity computational fluid dynamics (HF-CFD) to predict the flow and heat transfer state of the coolant in the reactor core is expensive, especially in scenarios that require extensive parameter search, such as uncertainty analysis and design optimization. This work investigated the performance of utilizing a multi-fidelity reduced-order model (MF-ROM) in PWR rod bundles simulation. Firstly, basis vectors and basis vector coefficients of high-fidelity and low-fidelity CFD results are extracted separately by the proper orthogonal decomposition (POD) approach. Secondly, a surrogate model is trained to map the relationship between the extracted coefficients from different fidelity results. In the prediction stage, the coefficients of the low-fidelity data under the new operating conditions are extracted by using the obtained POD basis vectors. Then, the trained surrogate model uses the low-fidelity coefficients to regress the high-fidelity coefficients. The predicted high-fidelity data is reconstructed from the product of extracted basis vectors and the regression coefficients. The effectiveness of the MF-ROM is evaluated on a flow and heat transfer problem in PWR fuel rod bundles. Two data-driven algorithms, the Kriging and artificial neural network (ANN), are trained as surrogate models for the MF-ROM to reconstruct the complex flow and heat transfer field downstream of the mixing vanes. The results show good agreements between the data reconstructed with the trained MF-ROM and the high-fidelity CFD simulation result, while the former only requires to taken the computational burden of low-fidelity simulation. The results also show that the performance of the ANN model is slightly better than the Kriging model when using a high number of POD basis vectors for regression. Moreover, the result presented in this paper demonstrates the suitability of the proposed MF-ROM for high-fidelity fixed value initialization to accelerate complex simulation.

Fatigue Life Prediction for the Skin Structures of Aircraft Sensor Pod Under Acoustic Load with Mean Stress (평균 응력을 고려한 음향 하중을 받는 항공기 센서 포드 외피 구조의 내구 수명 분석)

  • Min-Hyeok Jeon;Yeon-Ju Kim;Hyun-Jun Cho;Mi-Yeon Lee;In-Gul Kim;Hansol Lee;Jae Myung Cho;Jong In Bae;Ki-Young Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • The skin structure of sensor pod mounted on the exterior of aircraft can be exposed to the acoustic dynamic load and static load such as aerodynamic pressure and inertial load during flight. Fatigue life prediction of structural model under acoustic load should be performed and also differential stiffness of model modified by static load should be considered. The acoustic noise test spectrum of MIL-STD-810G was applied to the structural model and the stress response power spectral density (PSD) was calculated. The frequency response analysis was performed with or without prestress induced by inplane static load, and the response spectrum was compared. Time series data was generated using the calculated PSD, and the time and frequency domain fatigue life were predicted and compared. The variation of stress response spectrum due to static load and predicted fatigue life according to the different structural model considering mean stress were examined and decreasing fatigue life was observed in the model with prestress of compressive static load.

Equivalent Model Dynamic Analysis of Main Wing Assembly for Optionally Piloted Personal Air Vehicle (자율비행 개인항공기용 주익 조립체 등가모델 동특성 해석)

  • Kim, Hyun-gi;Kim, Sung Jun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.72-79
    • /
    • 2021
  • In this study, as part of the development of an autonomous flying personal aircraft, an equivalent model of the main wing assembly of an Optionally Piloted Personal Air Vehicle (OPPAV) was developed. Reliability of the developed equivalent model was verified by eigenvalue analysis. The main wing assembly consisted of a main wing, an inboard pod, and an outboard pod. First, for developing an equivalent model of each component, components to produce the equivalent model were divided into several sections. Nodes were then created on the axis of the equivalent model at both ends of each section. In addition, static analysis with unit force and unit moment was performed to calculate the deformation or the amount of rotation at the node to be used in the equivalent model. Equivalent axial, bending, and torsional stiffness of each section were calculated by applying the beam theory. Once the equivalent stiffness of each section was calculated, information of a mass and moment of inertia for each section was entered by creating a lumped mass in the center of each section. An equivalent model was developed using beam element. Finally, the reliability of the developed equivalent model was verified by comparison with results of mode analysis of the fine model.

Analysis of Antioxidant Enzyme Activity During Seedling Growth of Leymus chinensis Trin Under Salt and Dehydration Stresses (고염과 건조 스트레스 처리 조건 동안 양초 유식물체의 항산화효소 활성 분석)

  • Shim, Donghwan;Nam, Ki Jung;Kim, Yun-Hee
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.772-777
    • /
    • 2018
  • To understand the adaptability of Leymus chinensis forage grass to environmental stresses, we analyzed the $H_2O_2$ scavenging activity based on several antioxidant enzymes and total phenolics content, including peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT), in shoots and roots subjected to salt and dehydration stresses during seedling growth. After NaCl or PEG treatment, plants showed reduced seedling growth under over 200 mM NaCl or 30% PEG treatment condition in shoots and roots compared with the control condition. In addition, plants showed high enzymatic activity of CAT in the shoots, whereas they exhibited high activity levels of APX and POD in the roots in both the NaCl and PEG treatment conditions. These results seem to indicate that Leymus chinensis seedlings responding to salt and dehydration stresses during initial growth is associated with enhanced activity of $H_2O_2$ scavenging antioxidant enzymes in the shoots or roots. The plants also showed high levels of total phenolics under NaCl treatment, with a high concentration in both the shoots and roots. Our results showed that the induced activity patterns of APX in the roots and CAT in the shoots indicate that low $H_2O_2$ levels were mainly maintained through tissue-specific redox homeostasis involving enzymes such as APX and CAT during salt and dehydration stresses. This study highlights the importance of antioxidant enzymes in the establishment of Leymus chinensis seedlings under high salinity conditions, such as typical desertification.

Physiological Response of Young Seedlings from Five Accessions of Diospyros L. under Salinity Stress

  • Wei, Ping;Yang, Yong;Fang, Ming;Wang, Fei;Chen, Hejie
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.564-577
    • /
    • 2016
  • Salinity stress limits plant cultivation in many areas worldwide; however, persimmon (Diospyros spp.) has high tolerance to salt. Five accessions of Diospyros [three of Diospyros lotus (accession numbers 824, 846, and 847); one of Diospyros kaki var. sylvestris (869); and one of Diospyros virginiana (844)] were chosen for analysis of salinity stress. We compared the effects of salt stress on plant growth, relative water content (RWC), malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide content ($H_2O_2$), and antioxidative enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD; and ascorbate peroxidase, APX) in leaves of healthy potted seedlings from each of the five accessions after salt treatment for 25 days. Salt stress affected the growth of plants in all five accessions, with all three D. lotus accessions showing the most severe effect. Salt stress increased membrane lipid peroxidation in all accessions, but a stronger increase was observed in the three D. lotus accessions. Moreover, accumulation of $H_2O_2$ was faster in salt-sensitive D. lotus compared to salt-tolerant D. virginiana 844. The activities of all antioxidant enzymes increased in D. virginiana 844 and in D. kaki var. sylvestris 869; the activities of SOD, CAT, and APX were at similar levels in D. virginiana 844 and D. kaki var. sylvestris 869, but POD activity was stimulated to a greater extent in D. virginiana 844. The activities of all antioxidant enzymes (except POD) decreased in D. lotus 824 and increased (except for SOD) in D.lotus 846. The activities of SOD and APX decreased in D. lotus 847, whereas POD and CAT activities both increased. Relative water content decreased significantly in D. lotus. No significant changes in lipid peroxidation or relevant antioxidant parameters were detected in any of the accessions in controls treated with 0.0% NaCl. D. virginiana 844 had higher antioxidant capacity in response to salinity compared to other persimmon rootstocks. These results indicate that changes of these key physiological variables are related to salinity resistance in different accessions of persimmon.

Factors Associated with Place of Death in Korean Patients with Terminal Cancer

  • Hyun, Min Kyung;Jung, Kyung Hae;Yun, Young Ho;Kim, Young Ae;Lee, Woo Jin;Do, Young Rok;Lee, Keun Seok;Heo, Dae Seog;Choi, Jong Soo;Kim, Sam Yong;Kim, Heung Tae;Hong, Seok-Won
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7309-7314
    • /
    • 2013
  • Aim: To investigate factors that affect the place of death (POD) of terminal cancer patients. Materials and Methods: We recruited 702 consecutive patients (${\geq}18$ years) from 12 centers during July 2005 to October 2006, and 481 completed the questionnaire. In April 2011, we linked the data for 96.0% (n=462) of the deceased patients to the POD using the 2005-2009 death certificate data of Korea's National Statistical Office. The primary outcome variable was POD, and the predictive value of variables pertaining to patients and caregivers was evaluated using univariate and multivariate analyses. Results: Most patients died in a hospital (91.5%, n=441) and age, education, preference for place of terminal care, wish to use hospice/palliative care services, terminal cancer awareness, time between diagnosis and death, and global quality-of-life subscale of the EORTC QLQ-C30 of patients, and education and preference for place of terminal care of caregivers were significant predictors in univariate analyses. On multivariate analysis, patients and caregivers who preferred hospital/palliative care as the terminal care option over home care [adjusted odds ratio (aOR), 2.68; 95% confidential interval (CI), 1.18-7.04 and aOR: 2.65; 95%CI: 1.15-6.09 for patient and caregiver preferences, respectively] and caregivers who were highly educated (aOR, 3.19; 95%CI, 1.44-7.06) were predictors of POD. Conclusions: Most of the terminal cancer patients died in a hospital. Our findings indicate that major predictors of hospital deaths are preference of both the patient and caregiver for hospital/palliative care as the terminal care option and higher education of the caregiver.

Preliminary Products of Precise Orbit Determination Using Satellite Laser Ranging Observations for ILRS AAC

  • Kim, Young-Rok;Park, Sang-Young;Park, Eun-Seo;Lim, Hyung-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.275-285
    • /
    • 2012
  • In this study, we present preliminary results of precise orbit determination (POD) using satellite laser ranging (SLR) observations for International Laser Ranging Service (ILRS) Associate Analysis Center (AAC). Using SLR normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2, the NASA/GSFC GEODYN II software are utilized for POD. Weekly-based orbit determination strategy is applied to process SLR observations and the post-fit residuals check, and external orbit comparison are performed for orbit accuracy assessment. The root mean square (RMS) value of differences between observations and computations after final iteration of estimation process is used for post-fit residuals check. The result of ILRS consolidated prediction format (CPF) is used for external orbit comparison. Additionally, we performed the precision analysis of each ILRS station by post-fit residuals. The post-fit residuals results show that the precisions of the orbits of LAGEOS-1 and LAGEOS-2 are 0.9 and 1.3 cm, and those of ETALON-1 and ETALON-2 are 2.5 and 1.9 cm, respectively. The orbit assessment results by ILRS CPF show that the radial accuracies of LAGEOS-1 and LAGEOS-2 are 4.0 cm and 5.3 cm, and the radial accuracies of ETALON-1 and ETALON-2 are 30.7 cm and 7.2 cm. These results of station precision analysis confirm that the result of this study is reasonable to have implications as preliminary results for administrating ILRS AAC.

Different Physiological Response to Salt in Salt Tolerant Rice Mutants Induced by Gamma-Mutagenesis

  • Jang, Duk-Soo;Song, Mira;Kim, Sun-hee;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun;Kang, Si-Yong;Kim, Wook;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.259-266
    • /
    • 2011
  • When plants undergo stress, Reactive oxygen species (ROS) which remove bad elements such as mildew and virus is activated in plant body. However, if ROS is excessively increased, plant will be harmed itself by destruction of cell and signal system and phenomenon of lipid peroxidation. In order to identify content of lipid peroxidation and activity of some enzymes scavenging ROS, phenotypical and physiological analysis was performed with two mutant lines, Till-II-877 and Till-II-894, comparing with cv. Dongan (WT). In phenotype analysis, two mutant lines give to well-conditioned growth better than WT in since 5 days after salt treatment. In enzyme activities, there was a modest difference in the content of catalase (CAT) and peroxidase (POD) between Till-II-877 and Till-II-894, two mutant lines showed high levels in CAT contents than WT. However, they express low levels in POD contents. In MDA analysis, the content of Till-II-877 was higher than that of WT, but Till-II-894 was lower. This result indicates that two mutants have different mechanism against salt stress.

Active Flow Control Technology for Vortex Stabilization on Backward-Facing Step (와류 안정화를 위한 후향계단 유동 능동제어기법)

  • Lee, Jin-Ik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.246-253
    • /
    • 2013
  • This paper addresses the technology of active flow control for stabilizing a flow field. In order for flow field modeling from the control point of view, the huge-data set from CFD(computational fluid dynamics) are reduced by using a POD(Proper Orthogonal Decomposition) method. And then the flow field is expressed with dynamic equation by low-order modelling approach based on the time and frequency domain analysis. A neural network flow estimator from the pressure information measured on the surface is designed for the estimation of the flow state in the space. The closed-loop system is constructed with feedback flow controller for stabilizing the vortices on the flow field.

POD-based representation of the alongwind Equivalent Static Force for long-span bridges

  • Fiore, Alessandra;Monaco, Pietro
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.239-257
    • /
    • 2009
  • This paper develops and discusses a method by which it is possible to evaluate the Equivalent Static Force (ESF) of wind in the case of long-span bridges. Attention is focused on the alongwind direction. The study herein carried out deals with the classical problems of determining the maximum effects due to the alongwind action and the corresponding ESFs. The mean value of the maximum alongwind displacement of the deck is firstly obtained both by the spectral analysis and the Gust Response Factor (GRF) technique. Successively, in order to derive the other wind-induced effects acting on the deck, the Gust Effect Factor (GEF) technique is extended to long-span bridges. By adopting the GRF technique, it is possible to define the ESF that applied on the structure produces the maximum alongwind displacement. Nevertheless the application of the ESF so obtained does not furnish the correct maximum values of other wind-induced effects acting on the deck such as bending moments or shears. Based on this observation, a new technique is proposed which allows to define an ESF able to simultaneously reproduce the maximum alongwind effects of the bridge deck. The proposed technique is based on the GEF and the POD techniques and represents a valid instrument of research for the understanding of the wind excitation mechanism.