• Title/Summary/Keyword: PO2

Search Result 2,911, Processing Time 0.03 seconds

Photoacoustic Spectroscopic Study on Cobalt Incorporation onto the Surface of Mesoporous Molecular Sieves

  • 박동호;박성수;최상준
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.715-719
    • /
    • 1999
  • The incorporation of cobalt into mesoporous molecular sieves MCM-41 and MCM-48 was carried out. Co-PO/MCM41 and Co-PO/MCM48 were prepared using Co(II) acetate solution adjusted to pH = 3.0 with phosphoric acid by the incipient wetness method. Photoacoustic spectroscopy (PAS) was used to study the local environments of Co(II) incorporated into mesopores. The band around 500 nm in PAS of as-prepared Co-PO/MCM41 and Co-PO/MCM48 with Co(II) acetate solution was changed to triplet bands around 600 nm. This could be assigned to the 4 A2(F)-> 4T1(P) transition of Co(II) surrounded tetrahedrally by oxygen ions after calcination. It may be attributable to that the octahedral cobalt species containing phosphate ligands in coordination sphere reacting with framework's silanol groups to be dispersed atomically onto the surface of mesoporous molecular sieves as a tetrahedral species. This is unlike that the Co in Co-Cl/MCM41 and direct-synthesized Co-MCM41 transforms to Co oxide phase upon calcination. Co-PO/MCM41 and Co-PO/MCM48 were stable while treated with water.

A study on the Preparation of Hickel Yellow from Waste Ni-Catalyst (폐 Ni 촉매로 부터 Nickel Yellow의 조성에 관한 연구)

  • 김성빈
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.2 no.1
    • /
    • pp.71-75
    • /
    • 1984
  • NiNH$_{4}PO_{4}$ was Prepared from waste Ni catalyst used in hydrogenation of oil and fat, NiNH$_{4}PO_{4}$ was calcined at different temperature respectly 800, 1000, 1100$^{\circ}$C to prepare Nickel yellow. The results from this experiment are summerized as follow: 1) Nickel yellow formed at 1100$^{\circ}$C was most clearness yellow color from color analyzer data. 2) Nickel yellow was consist of ${\alpha}-Ni_{2}P_{2}O_{7}$, $Ni_{3}(PO_{4})_{2}$ from X-ray diffraction analysis. 3) The endothermic pick at 100$^{\circ}$C and exotherwic pick about 1050$^{\circ}$C on calcination of NiNH$_{4}PO_{4}$ were checked in DTA (difference thermal analysis data)

  • PDF

ON RIGHT(LEFT) DUO PO-SEMIGROUPS

  • Lee, S.K.;Park, K.Y.
    • Korean Journal of Mathematics
    • /
    • v.11 no.2
    • /
    • pp.147-153
    • /
    • 2003
  • We investigate some properties on right(resp. left) duo $po$-semigroups.

  • PDF

KH2PO4-aided soil washing for removing arsenic from water-stable soil aggregates collected in southern China

  • Zhao, Ranran;Li, Xiaojun;Zhang, Zhiguo;Zhao, Guanghui
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.304-310
    • /
    • 2016
  • Removal of arsenic (As) from soil aggregates with particle sizes of > 2.0, 2.0-0.25, 0.25-0.053, < 0.053 mm by soil washing of $KH_2PO_4$ and the kinetics of As releasing from soil aggregates were investigated. Effects of $KH_2PO_4$ concentration, ratio of liquid/soil and washing duration on the removal were fully explored. The results showed that the high As removal was obtained in > 2 mm aggregates (48.56%) and < 0.053 mm aggregates (42.88%) under the optimum condition ($KH_2PO_4$ concentration of 0.1 mol/L, and liquid/soil ratio (10 mL/g) for 360 min). 62.82% of As was extracted from aggregates with size less than 0.25 mm. Only 11.88% was contributed by the large aggregates (> 2.0mm). Using $KH_2PO_4$ washing, it was also found that extracted As is mainly in form of either specifically sorbed As or As associated with oxides of Fe and Al. Elovich model can describe the removal process of As more precisely than Two-constant kinetic models. The optimum washing conditions and removal process is also applied to bulk soil. This technique in this study is reliable, cost-effective and offers a great potential for practical application in soil remediation.

Synthesis and Electrochemical Properties of Nanocrystalline LiFePO4 Obtained by Different Methods

  • Son, C.G.;Chang, D.R.;Kim, H.S.;Lee, Y.S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • Nanocrystalline $LiFePO_4$ powders were prepared at 660-$670^{\circ}C$ in an Ar atmosphere using two different synthetic routes, solid-state and sol-gel. Both materials showed well-developed XRD patterns without any impurity peaks. Particles composed in the range of 200-300 nm from the solid-state method, and 50-100 nm from the sol-gel method, were confirmed through scanning electron microscopy and dynamic light scattering. The $LiFePO_4$ obtained by the sol-gel method offered a high discharge capacity (153 mAh/g) and stable discharge behavior, even at elevated temperatures (50 and $60^{\circ}C$), whereas poor electrochemical performance was observed from the solid-state method. Rate capability studies for sol gel-derived $LiFePO_4$ ranged from 0.2 to 30 C, which revealed excellent retention over 70 cycles with a 99.9% capacity.

Effects of N & P Treatment Based on Liquid Organic Materials for Capacitive Deionization(CDI) (축전식 탈염 공정의 액상 유기물에 따른 질소(N) 및 인(P) 처리 특성)

  • Lee, Bo-Ram;Jeong, In-Jo;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • Organic carbons such as methanol, ethanol, iso-propanol, methoxy ethanol, glucose are added(1, 2, 3%) in the 2000 ppm $NH_3$ and $H_3PO_4$. As vol.%. cyclic voltammetry measurement of the capacity with the addition of organic carbon, the results of $NH_3$ + 3 vol.% Methanol Addition, $H_3PO_4$ + 2 vol.% iso-propanol addition of the increase in capacity was observed. Applying to the CDI Module cell with an addiction of organic carbon is confirm that remove $NH_4$-N and $PO_4$-P in sewage. Namely, the removal efficiency of $NH_3$ was increase of 16.4% during adsorption, 30.4% during desorption and the removal efficiency of $H_3PO_4$ was increase of 63% during adsorption, 54.7% during desorption. Therefore, the result of this research is confirm that effect of the N, P removal and considered that reduction of the operating costs without removing the organic matter in the influent wastewater.

Evaluating the Performance of Blended Fertilizer Draw Solution in Reuse of Sewage Water Using Forward Osmosis (정삼투를 이용한 하수의 재이용에서 혼합비료 유도용액의 성능 평가)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.90-96
    • /
    • 2020
  • This paper aims to reuse sewage by a forward osmosis using a blended fertilizer as a draw solution. This work deals with the primary sedimentation basin influent, effluent, and secondary sedimentation basin effluent from J sewage treatment plant. The average permeate water flux was higher in the order of the blend of KCl and NH4Cl > KCl and NH4H2PO4 > KCl and (NH4)2HPO4, and the reverse solute flux was lower in the order of the blend of KCl and NH4H2PO4 < KCl and NH4Cl < KCl and (NH4)2HPO4. Regardless of the blended fertilizer, the permeate water flux of the effluent from the secondary sedimentation basin was the highest. The blended fertilizer of KCl and NH4H2PO4 was found to be most useful for the reuse of sewage because it contains nitrogen, phosphorus and potassium, which are the major components of a fertilizer, and has a low reverse solute flux. When the blend of KCl and NH4H2PO4 was used as a draw solution, the average permeate water and reverse solute flux for the secondary sedimentation basin effluent were 12.14 L/㎡hr and 0.012 mol/㎡s, respectively.

Removal of Nitrogen and Phosphorus in Anaerobic Fermentation Supernatant by Struvite Crystallization (Struvite 결정화를 이용한 혐기성 발효액의 질소와 인 제거)

  • Kim, Jongoh;Jung, Jongtae;Kim, Harkkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.5-12
    • /
    • 2006
  • This study was conducted to investigate the effect of operational parameters such as dosage of magnesium and phosphate, pH, reaction time and existence crystal core for the removal of nitrogen and phosphorus in anaerobic fermentation supernatant by struvite crystallization. Optimal mole ratio of $Mg^{2+}:NH_4{^+}:PO_4{^{3-}}$ was 1.2:1.0:1.2. Under the optimal molar ratio, removal ratio and reaction rate constant of $NH_4{^+}-N$ and $PO_4{^{3-}}-P$ were 79.2, 96.8%, 0.157 and $0.344min^{-1}$, respectively. Optimal pH and reaction time were 11 and 10 minutes, respectively, in the optimal molar ratio. Residual concentration of $NH_4{^+}-N$ and $PO_4{^{3-}}-P$ showed lowest value with 1 g/L of crystal core addition. SEM analysis of struvite crystallization with crystal core showed higher crystal core growth than that of without crystal core. Struvite precipitate proved to be orthorhomic crystal structure by XRD analysis.

  • PDF