• Title/Summary/Keyword: PNP

Search Result 122, Processing Time 0.024 seconds

ESD Failure Analysis of PMOS Transistors (PMOS 트랜지스터의 ESD 손상 분석)

  • Lee, Kyoung-Su;Jung, Go-Eun;Kwon, Kee-Won;Chun, Jung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.40-50
    • /
    • 2010
  • The studies of PMOS transistors in CMOS technologies are reviewed- focusing on the snapback and breakdown behavior of the parasitic PNP BJTs in high current regime. A new failure mechanism of PMOSFET devices under ESD conditions is also analyzed by investigating various I/O structures in a $0.13\;{\mu}m$ CMOS technology. Localized turn-on of the parasitic PNP transistor can be caused by localized charge injection from the adjacent diodes into the body of the PMOSFET, significantly degrading the ESD robustness of PMOSFETs. Based on 2-D device simulations the critical layout parameters affecting this problem are identified. Design guidelines for avoiding this new PMOSFET failure mode are also suggested.

Construction and immunization with double mutant ΔapxIBD Δpnp forms of Actinobacillus pleuropneumoniae serotypes 1 and 5

  • Dao, Hoai Thu;Truong, Quang Lam;Do, Van Tan;Hahn, Tae-Wook
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2020
  • Actinobacillus pleuropneumoniae (APP) causes a form of porcine pleuropneumonia that leads to significant economic losses in the swine industry worldwide. The apxIBD gene is responsible for the secretion of the ApxI and ApxII toxins and the pnp gene is responsible for the adaptation of bacteria to cold temperature and a virulence factor. The apxIBD and pnp genes were deleted successfully from APP serotype 1 and 5 by transconjugation and sucrose counter-selection. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants lost hemolytic activity and could not secrete ApxI and ApxII toxins outside the bacteria because both mutants lost the ApxI- and ApxII-secreting proteins by deletion of the apxIBD gene. Besides, the growth of these mutants was defective at low temperatures resulting from the deletion of pnp. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants were significantly attenuated compared with wild-type ones. However, mice vaccinated intraperitoneally with APP5ΔapxIBDΔpnp did not provide any protection when challenged with a 10-times 50% lethal dose of virulent homologous (APP5) and heterologous (APP1) bacterial strains, while mice vaccinated with APP1ΔapxIBDΔpnp offered 75% protection against a homologous challenge. The ΔapxIBDΔpnp mutants were significantly attenuated and gave different protection rate against homologous virulent wild-type APP challenging.

Design of a high speed and high intergrated ISL(Intergrated Schottky Logic) using a merged transistor (병합트랜지스터를 이용한 고속, 고집적 ISL의 설계)

  • 장창덕;이용재
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.415-419
    • /
    • 1999
  • Many bipolar logic circuit of conventional occurred problem of speed delay according to deep saturation state of vertical NPN Transistor. In order to remove minority carries of the base region at changing signal in conventional bipolar logic circuit, we made transistor which is composed of NPN transistor shortened buried layer under the Base region, PNP transistor which is merged in base, epi layer and substrate. Also the Ring-Oscillator for measuring transmission time-delay per gate was designed as well. The structure of Gate consists of the vertical NPN Transistor, substrate and Merged PNP Transistor. In the result, we fount that tarriers which are coming into intrinsic Base from Emitter and the portion of edge are relatively a lot, so those make Base currents a lot and Gain is low with a few of collector currents because of cutting the buried layer of collector of conventional junction area. Merged PNP Transistor's currents are low because Base width is wide and the difference of Emitter's density and Base's density is small. we get amplitude of logic voltage of 200mv, the minimum of transmission delay-time of 211nS, and the minimum of transmission delay-time per gate of 7.26nS in AC characteristic output of Ring-Oscillator connected Gate.

  • PDF

A Study on ESD Protection Circuit with High Holding Voltage with Parallel PNP and N+ difrt inserted (Parallel PNP 및 N+ drift가 삽입된 높은 홀딩전압특성을 갖는 ESD보호회로에 관한 연구)

  • Kwak, Jae-Chang
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.890-894
    • /
    • 2020
  • In this paper, we propose an ESD protection device with improved electrical characteristics through structural changes of LVTSCR, a typical ESD protection device. The proposed ESD protection device has a higher holding voltage than the existing LVTSCR by inserting a long N+ drift region and additional P-Well and N-Well, and improves the latch-up immunity, a chronic disadvantage of a general SCR-based ESD protection device. In addition, the effective base width of parasitic BJTs was set as a design variable, and the electrical characteristics of the proposed ESD protection device were verified through Synopsys' TCAD simulation so that it can be applied to the required application by applying the N-Stack technology.

Porosity and Liquid-phase Adsorption Characteristics of Activated Carbons Prepared From Peach Stones by $H_3PO_4$

  • Attia, Amina A.;Girgis, Badie S.;Tawfik, Nady A.F.
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.89-95
    • /
    • 2005
  • Crushed peach stone shells were impregnated with $H_3PO_4$ of increasing concentrations (30-70%) followed by heat treatment at 773 K for 3 h. Produced carbons (ACs) were characterized by $N_2$ adsorption at 77 K using the BET-equation and the ${\alpha}$-method. High surface area microporous ACs were obtained, with enhanced internal pore volume, as function of % $H_3PO_4$. Adsorption isotherms from aqueous solution were determined for methylene blue (MB) and p-nitrophenol (PNP), as representatives for dye and phenolics pollutant molecules. Application of the Langmuir model proved the high limiting capacity towards both solute molecules, MB was uptaken in increasing amounts as function of $H_3PO_4$ concentration and generated porosity. High removal of PNP was almost the same irrespective of porosity characteristics. Competitive adsorption of $H_2O$ molecules on the hydrophilic carbon surface seems to partially reduce the available area to the PNP molecules. Application of the pseudo-second order law described well the fast adsorption (${\leq}$ 120 min) at two initial dye concentrations.

  • PDF

Oral Manifestation of Paraneoplastic Pemphigus

  • Kim, Seurin;Park, In Hee;Park, YounJung;Kwon, Jeong-Seung;Choi, Jong-hoon;Ahn, Hyung-Joon
    • Journal of Oral Medicine and Pain
    • /
    • v.44 no.3
    • /
    • pp.118-122
    • /
    • 2019
  • Paraneoplastic pemphigus (PNP) is a rare and often fatal autoimmune blistering disease accompanied by both benign and malignant neoplasms. Usually, oral, skin, and mucosal lesions are the earliest manifestations shown by PNP patients. Oral ulcers are initial lesions in various autoimmune diseases like pemphigus, bullous pemphigoid, erythema multiforme, graft-versus-host, lichen planus, it does not improved despite of high-dose steroid therapy. We report a-35-year-old female who presented oral ulceration, lip crust and skin lesions. By doing several examinations, such as enzyme-linked immunosorbent assay, incisional biopsy with indirect immunofluorescence, she was diagnosed PNP with non-Hodgkin's lymphoma on pancreas.

Implementation of PNP on the Control Board using Hardware/Software Co-design

  • Kim, Si-hwan;Lin, Chi-ho;Kim, Hi-seok
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.305-308
    • /
    • 2002
  • This paper proposes a control board that includes PNP function with extensibility and effective allocation of allocation. The object of study is to overcome limited extensity of old systems and it is to reuse the system. The system recognizes automatic subsystem from application of main system with board level that is using hardware and software co-design method. The system has both function of main-board and sub-board. So one system can operate simultaneously such as module of alien system. This system has advantages that are fast execution, according as process functional partition to hardware/ software co-design and board size is reduced as well as offer extensity of development system. We obtained good result with control board for existent Z-80 training kit.

  • PDF

A Study on the Design and Electrical Characteristics of High Performance Smart Power Device (고성능 Smart Power 소자 설계 및 전기적 특성에 관한 연구)

  • Ku, Yong-Seo
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.1-8
    • /
    • 2003
  • In this study, the high performance BCD device structure which satisfies the high voltage and fast switching speed characteristics is devised. Through the process and device simulation, optimal process spec. & device spec. are designed. We adapt double buried layer structure, trench isolation process, n-/p-drift region formation and shallow junction technology to optimize an electrical property as mentioned above. This I.C consists of 20V level high voltage bipolar npn/pnp device, 60V level LDMOS device, a few Ampere level VDMOS, 20V level CMOS device and 5V level logic CMOS.

  • PDF

Inhibition of Purine Nucleoside Phosphorylase (PNP) in Micrococcus luteus by Phenylglyoxal

  • Choi, Hye-Seon
    • Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.270-273
    • /
    • 1996
  • Micrococcus luteus purine nucleoside phosphorylase (PNP) has been purified and characterized. The physical and kinetic properties have been described previously. Chemical modification of the enzyme was attempted to gain insight on the active site. The enzyme was inactivated in a time-dependent manner by the arginine- specific modifying reagent phenylglyoxal. There was a linear relationship between the observed rate of inactivation and the phenylglyoxal concentration. At 30 $^{\circ}C$ the bimolecular rate constant for the modification was 0.015 $min^{-1}mM^{-1}$ in 50 mM $NaHCO_3$ buffer, pH 7.5. The plot of logk versus log phenylglyoxal concentration was a strainght line with a slope value of 0.9, indicating that modification of one arginine residue was needed to inactivate the enzyme. Preincubation with saturated solutions of substrates protected the enzyme from inhibition of phenylglyoxal, indicating that reactions with phenylglyoxal were directed at arginyl residues essential for the catalytic functioning of the enzyme.

  • PDF