• Title/Summary/Keyword: PMSM(Permanent Magnet Synchronous Motor)

Search Result 393, Processing Time 0.023 seconds

Design of a Switched Reluctance Motor Driving an Electric Compressor for HEVs (하이브리드 자동차(HEV) 용 전동식 컴프레서 구동을 위한 SRM 설계)

  • Jeong, Yong-Hoe;Jeon, Yong-Hee;Kang, Jun-Ho;Kim, Jaehyuck
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.620-625
    • /
    • 2013
  • This paper presents the design of a switched reluctance motor (SRM) for electric air conditioning compressors which are applied to hybrid electric vehicles (EVs). The motor for driving air conditioning compressor which is recently used on EV(electric vehicle) / HEV (hybrid electric vehicle) is PMSM(permanent magnet synchronous motor) or BLDCM(brushless DC motor). However disadvantage of motors that uses permanent magnets are vulnerable to high temperatures because of the demagnetization by the high temperature and the permanent magnet is expensive because of the high price of rare earth materials from China's monopoly. Therefore, in the automotive insustry is interested in the non-rare-earth motors. SRM has many advantages. it's resistant to high temperatures, price is cheaper, because there are no permanent magnets and winding in the rotor. Also it's high relability and efficiency, suitable for high-speed operation because of structure is simple. In this paper, the SRM, non-rare-earth motor, are designed, analyzed and experimented drive to replace an existing electric compressor drive motor.

Characteristic Analysis of Integrated Power System and Propulsion Motor Comparison for Electric Vessels According to the Driving Condition (전기추진선박의 운전조건별 전력특성 및 추진전동기 특성 비교 해석)

  • Lee, Sang-Gon;Jeong, Yu-Seok;Jung, Sang-Yong;Lee, Cheol-Gyun
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.96-103
    • /
    • 2011
  • This paper deals with the characteristic analysis of the integrated power system applied for the electric propulsion ships. This includes the electric power system modeling which is accomplished with the electric power network mainly composed of generators, switchboards, variable frequency devices, electric motors, and etc. In addition, performance comparison between the permanent magnet synchronous motor (PMSM) and the induction motor (IM) for 3.7MW ship propulsion has been done. In order to investigated the main performance of propulsion motor, a coupled model taking into account torque density, copper loss, iron loss, efficiency, power factor, and torque ripple using finite element analysis (FEA) has been employed.

Design and Stability Analysis of a Fuzzy Observer-based Fuzzy Speed Controller for a PM Synchronous Motor (영구자석 동기전동기를 위한 퍼지 관측기 기반의 퍼지 제어기의 설계 및 안정도 해석)

  • Jung,, Jin-Woo;Choi, Young-Sik;Yu, Dong-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • This paper proposes a new fuzzy load torque observer and a fuzzy speed regulator to guarantee a robust speed control of a permanent magnet synchronous motor (PMSM). Also, the LMI conditions are given for the existence of the fuzzy load torque observer and fuzzy speed controller, and the gains of the observer and controller are calculated. The stability of the proposed control system is analytically proven. To validate the effectiveness of the proposed observer-based fuzzy speed controller, the simulation and experimental results are presented. Finally, it is definitely demonstrated that the proposed control algorithm can be used to accurately control the speed of a PM synchronous motor.

Adaptive Fuzzy Control for High Performance Speed Controller in PMSM Drive (PMSM 드라이브의 고성능 속도제어를 위한 적응 퍼지제어기)

  • Chung, Dong-Hwa;Lee, Jung-Chul;Lee, Hong-Gyun;Jung, Tack-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.79-81
    • /
    • 2002
  • This paper develops a adaptive fuzzy controller based fuzzy logic control for high performance speed controller in permanent magnet synchronous motor(PMSM) drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed adaptive fuzzy controller is confirmed by performance results for PMSM drive system.

  • PDF

Effects of V-Skew on the Torque Characteristic in Permanent Magnet Synchronous Motor

  • Lee, Jong Gun;Lee, Ki Wook;Park, Gwan Soo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.390-393
    • /
    • 2013
  • In this paper, we proposed how the V-skew applied of the rotor to inprove the characteristics of cogging torque in large PMSM. Large PMSM is difficult to apply a pitch of the diagonal magnetic skew because of the motor's structure and making. In addition, the force in the direction of z-axis occurs when the diagonal skew is applied. So we are applying the optimal v-skew to reduce torque ripple and cogging torque because this reduces the noise and vivration on the motor. Throug FEM dD analysis, we studied to find the optimal v-skew angle for reducing torque ripple.

PMSM Torque Control Algorithm under One Phase Open-Fault in Three-Phase Inverter Condition (삼상 인버터의 한상 개방 고장 시 PMSM 토크제어 알고리즘)

  • Lee, Jin-Hwan;Lee, Jong-Min;Cho, Young-Pyo;Kwon, Chun-Ki;Yoo, Ji-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1249-1254
    • /
    • 2013
  • A torque control algorithm suitable for detecting an open circuit failure in which one of the three phases is unable to supply power to a motor in the permanent magnet synchronous motor is presented in this paper. When the failure occurs in the inverter, the output torque of motor is restricted. A new method which is implemented by using only a processor algorithm internally without any hardware redundancy circuit is proposed. A simulation and experimental study is carried out with a three phase inverter system to show the validity of the proposed method.

Velocity Control of Permanent Magnet Synchronous Motors using Model Predictive and Sliding Mode Cascade Controller (슬라이딩 모드 및 모델 예측 직렬형 제어기를 이용한 영구자석형 동기전동기의 속도제어)

  • Lee, Ilro;Lee, Youngwoo;Shin, Donghoon;Chung, Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.801-806
    • /
    • 2015
  • In this paper, we propose cascade-form velocity controller for a permanent magnet synchronous motor (PMSM). The proposed controller consists of a sliding-mode controller (SMC) for the inner current control loop and a model-predictive controller (MPC) for the outer velocity control loop. With SMC, we can ensure that the current tracking error always converges to zero in finite time. The SMC is designed to track the desired currents. Additionally, with MPC, we can obtain the optimal velocity control input which minimizes the cost function. Constraint conditions for input and input variation are included in the MPC design. The simulation results are included to validate the performance of the proposed controller.

Sensorless Scheme for Interior Permanent Magnet Synchronous Motors with a Wide Speed Control Range

  • Hong, Chan-Hee;Lee, Ju;Lee, Dong-Myung
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2173-2181
    • /
    • 2016
  • Permanent magnet synchronous motors (PMSMs) have higher torque and superior output power per volume than other types of AC motors. They are commonly used for applications that require a large output power and a wide range of speed. For precise control of PMSMs, knowing the accurate position of the rotor is essential, and normally position sensors such as a resolver or an encoder are employed. On the other hand, the position sensors make the driving system expensive and unstable if the attached sensor malfunctions. Therefore, sensorless algorithms are widely researched nowadays, to reduce the cost and cope with sensor failure. This paper proposes a sensorless algorithm that can be applied to a wide range of speed. The proposed method features a robust operation at low-speed as well as high-speed ranges by employing a gain adjustment scheme and intermittent voltage pulse injection method. In the proposed scheme the position estimation gain is tuned by a closed loop manner to have stable operation in tough driving environment. The proposed algorithm is fully verified by various experiments done with a 1 kW outer rotor-type PMSM.

Method Controlling Two or More Sets of PMSM by One Inverter on a Railway Vehicle

  • Ito, Takuma;Inaba, Hiromi;Kishine, Keiji;Nakai, Mitsuki;Ishikura, Keisuke
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.207-214
    • /
    • 2014
  • If two or more Permanent Magnet Synchronous Motors (PMSM) can be controlled by one inverter, a train can be driven by less energy than the present Induction Motor (IM) drive system. First, this paper proposes a method for simulating the movement of wheels and a vehicle to develop a control method. Next, a method is presented for controlling two or more PMSMs by one inverter.

Robust Recurrent Wavelet Interval Type-2 Fuzzy-Neural-Network Control for DSP-Based PMSM Servo Drive Systems

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.139-160
    • /
    • 2013
  • In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped parameter uncertainty. Furthermore, the compensated controller is designed to achieve $L_2$ tracking performance with a desired attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust performance and precise response regardless of load disturbances and PMSM parameters uncertainties.