• Title/Summary/Keyword: PMMA material

Search Result 234, Processing Time 0.026 seconds

Asperities on the Surface of Plate-like Alumina and their Effect on Nacre-inspired Alumina-PMMA Composites

  • Kim, Bo-Yeon;Lee, Yoonjoo;Kim, Soo-Ryong;Shin, Dong-Geun;Kwon, Woo-Teck;Choi, Duck-Kyun;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.248-252
    • /
    • 2015
  • Natural materials often have unique mechanical properties, such as the hierarchical structure of nacre formed through mineral bridges or asperities created between an inorganic particle and a natural-layer surface. As these asperities produce an exceptional shear resistance, in this study, we aimed to emulate the natural structure of nacre by synthesizing inorganic asperities and mineral bridges with different temperatures in the range of $1100-1300^{\circ}C$ and clay contents from 10 - 50 wt%. Following the infiltration of methyl methacrylate, we measured the mechanical properties to assess whether they were improved by the asperities. It was confirmed that the asperities improved the bending strength by 10%, and the anchoring effect was observed on the fracture surface.

The surface morphology control of the polymeric material using a plasma treatment (플라즈마 표면처리를 이용한 폴리머 소재의 표면형상제어)

  • Sin, Min-Ho;Park, Yeong-Bae;Kim, Do-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.304-304
    • /
    • 2015
  • 플라즈마 표면처리를 통해 폴리머의 나노 구조를 형성하는 연구는 활발히 진행되고 있으나, 표면 처리를 통해 나노 기둥 구조를 형성하기 위해 본 연구에서는 폴리머(PMMA, PDMS, PET, NOA) 위에 표면형상 변화를 위한 산소 플라즈마 처리를 하였으며, 이 때 플라즈마 표면처리 공정조건은 파워 및 가스분압별에 대한 조건 변화를 주어 표면처리 후 표면형상 변화를 SEM과 접촉각을 통해 조사하였다. 이를 통해 얻어진 표면형상에서 PMMA의 나노 기둥 구조를 이용하여 건식접착패치에 응용할 수 있을 것으로 기대된다.

  • PDF

A Study on the Tracking Aging of PMMA using Infrared Radiation Camera (적외선 방사 카메라를 이용한 PMMA 트래킹 열화에 관한 연구)

  • Lee, Hack-Hyun;Lim, Jang-Seob;So, Soon-Youl;Lee, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.2
    • /
    • pp.188-193
    • /
    • 2007
  • Tracking and erosion of Poly Methyl Methacrylate (PMMA) and the suppression mechanism of alumina trihydrate were investigated in the present study The conventional testing as IEC-60587 is widely used in surface aging measurement of outdoor insulator those testing can carry out very short time for Lab testing. Also IEC-60587 testing is able to offer the standard judgement of relative degradation level of outdoor HV system. Therefore it is very useful method compare to previous conventional tracking testing method, But surface discharges(SD) have very complex characteristics of discharge pattern so it is required estimation research to development of precise analysis method. In recent, the study of IRR-Camera is carrying out discover of temperature of power equipment through condition diagnosis and system development of degradation diagnosis. In this paper, SD occurred from IEC-60587 is measured with the surface temperature of weibull distribution in real time, the degradation grade of SD is analyzed through produced patterns in IEC-60587 using Infrared Radiation(IRR) camera.

Estimation of Computed Tomography Dose in Various Phantom Shapes and Compositions (다양한 팬텀 모양 및 재질에 따른 전산화단층촬영장치 선량 평가)

  • Lee, Chang-Lae
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • The purpose of this study was to investigate CTDI (computed tomography dose index at center) for various phantom shapes, sizes, and compositions by using GATE (geant4 application for tomographic emission) simulations. GATE simulations were performed for various phantom shapes (cylinder, elliptical, and hexagonal prism PMMA phantoms) and phantom compositions (water, PMMA, polyethylene, polyoxymethylene) with various diameters (1-50 cm) at various kVp and mAs levels. The $CTDI_{100center}$ values of cylinder, elliptical, and hexagonal prism phantom at 120 kVp, 200 mAs resulted in 11.1, 13.4, and 12.2 mGy, respectively. The volume is the same, but $CTDI_{100center}$ values are different depending on the type of phantom. The water, PMMA, and polyoxymethylene phantom $CTDI_{100center}$ values were relatively low as the material density increased. However, in the case of Polyethylene, the $CTDI_{100center}$ value was higher than that of PMMA at diameters exceeding 15 cm ($CTDI_{100center}$ : 35.0 mGy). And a diameter greater than 30 cm ($CTDI_{100center}$ : 17.7 mGy) showed more $CTDI_{100center}$ than Water. We have used limited phantoms to evaluate CT doses. In this study, $CTDI_{100center}$ values were estimated and simulated by GATE simulation according to the material and shape of the phantom. CT dosimetry can be estimated more accurately by using various materials and phantom shapes close to human body.

The effect of LiF-maleic acid added calcium aluminate hone cement & CA-PMMA composite bone cement on the healing of calvarial defect6) (LiF-maleic acid 첨가 calcium aluminate 골시멘트 및 CA-PMMA 복합 골시멘트가 백서 두개골 결손부 치유에 미치는 영향)

  • Shin, Jung-A;Yun, Jeong-Ho;Oh, Seung-Han;Baik, Jeong-Won;Choi, Se-Young;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.753-767
    • /
    • 2002
  • The purpose of this study was to evaluate histologically the effect of LiF-maleic acid added calcium aluminate(LM-CA) bone cement & CA-PMMA composite bone cement on the healing of calvarial defect in Sprague-Dawley rats. The critical size defects were surgically produced in the calvarial bone using the 8mm trephine bur. The rats were divided in three groups : In the control group, nothing was applied into the defect of each rat. LM-CA bone cement was implanted in the experimental group 1 and CA-PMMA composite bone cement was implanted in the experimental group 2. Rats were sacrificed at 2, 8 weeks after surgical procedure. The specimens were examined by histologic analysis, especially about the bone-cement interface and the response of surrounding tissue. The results are as follows; 1. In the control group, inflammatory infiltration was observed at 2 weeks. At 8 weeks, periosteum and duramater were continuously joined together in the defect area. But the center of defect area was filled up with the loose connective tissue. 2. In the experimental group 1, the bonding between implanted bone cement and the existing bone was seen, which more increased in 8 weeks than 2 weeks. Inflammatory infiltration and the dispersion of implanted bone cement particles were seen in both 2 weeks and 8 weeks. 3. In the experimental group 2, implanted bone itself had a dimensional stability and no bonding between implanted bone cement and the existing bone was seen in both 2 weeks and 8 weeks. Implanted bone cement was encapsulated by fibrous connective tissue. In addition, inflammatory infiltration was seen around implanted bone cement. On the basis of these results, when LM-CA bone cement or CA-PMMA composite bone cement was implanted in rat calvarial defect, LM-CA bone cement can be used as a bioactive bone graft material due to ability of bonding to the existing bone and CA-PMMA can be used as a graft material for augmentation of bone-volume due to dimensional stability.

Evaluation of Radiolucent Considering the Compression Paddle Materials in Mammography (유방촬영장치의 압박대 재질을 고려한 투과선량 평가)

  • Hong, Dong-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.11
    • /
    • pp.307-312
    • /
    • 2015
  • Mammography improves image quality that is on the increase day by day and get a picture with the pressure it is essential to reduce the dose. However, because due to the thickness of the cuff itself may increase the dose scattering lines is necessary study on the cuff material. Material that is currently being used in clinical Polycarbonate is a plastic and family. If you try to reduce the exposure of patients than itgie need to consider for the better material in this study to compare against a radiolucent line for amorphous plastic material of the plastic. results radiolucent and half layer, transmitting dose Pixel values HIPS, GPPS, ABS, Tritan, PC, PMMA showed high results in the net.

Residue Free Fabrication of Suspended 2D Nanosheets for in-situ TEM Nanomechanics

  • Sharbidre, Rakesh Sadanand;Byen, Ji Cheol;Yun, Gyeong Yeol;Ryu, Jae-Kyung;Lee, Chang Jun;Hong, Seong-Gu;Bramhe, Sachin;Kim, Taik Nam
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.627-632
    • /
    • 2018
  • Two dimensional(2D) crystals, composed of a single layer or a few atomic layers extracted from layered materials are attracting researchers' interest due to promising applications in the nanoelectromechanical systems. Worldwide researchers are preparing devices with suspended 2D materials to study their physical and electrical properties. However, during the fabrication process of 2D flakes on a target substrate, contamination occurs, which makes the measurement data less reliable. We propose a dry transfer method using poly-methyl methacrylate(PMMA) for the 2D flakes to transfer onto the targeted substrate. The PMMA is then removed from the device by an N-Methyl-2-pyrrolidone solution and a critical point dryer, which makes the suspended 2D flakes residue free. Our method provides a clean, reliable and controllable way of fabricating micrometer-sized suspended 2D nanosheets.

Preparation and properties of MMA/fluoro-acrylate copolymers for POF cladding application (플라스틱 광섬유 클래드용 MMA/fluoro-acrylate 공중합체의 합성과 특성 분석)

  • Park, Dong-il;Park, Min;Kim, Byoung-Chul
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.17-20
    • /
    • 2003
  • Step index POFs(SIPOF) are composed of core polymers and cladding polymers. Poly(methyl methacrylate) (PMMA) and polystyrene (PS) are normally used as core materials. The refractive index of cladding materials should be less than 2-5 % that of the core material. PMMA and fluorinated polymers are used as cladding materials on PS and PMMA core, respectively$^1$. Cladding materials which have lower refractive index than core materials reflect light at less than critical angle, which is transmitted down the core. (omitted)

  • PDF

Evaluation of polymethyl methacrylate resin mechanical properties with incorporated halloysite nanotubes

  • Abdallah, Reham M.
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.167-171
    • /
    • 2016
  • PURPOSE. This study inspects the effect of incorporating halloysite nanotubes (HNTs) into polymethyl methacrylate (PMMA) resin on its flexural strength, hardness, and Young's modulus. MATERIALS AND METHODS. Four groups of acrylic resin powder were prepared. One group without HNTs was used as a control group and the other three groups contained 0.3, 0.6 and 0.9 wt% HNTs. For each one, flexural strength, Young's modulus and hardness values were measured. One-way ANOVA and Tukey's test were used for comparison (P<.05). RESULTS. At lower concentration (0.3 wt%) of HNT, there was a significant increase of hardness values but no significant increase in both flexural strength and Young's modulus values of PMMA resin. In contrast, at higher concentration (0.6 and 0.9 wt%), there was a significant decrease in hardness values but no significant decrease in flexural strength and Young's modulus values compared to those of the control group. CONCLUSION. Addition of lower concentration of halloysite nanotubes to denture base materials could improve some of their mechanical properties. Improving the mechanical properties of acrylic resin base material could increase the patient satisfaction.

Polymer Replication Using Ultrasonic Vibration (초음파진동에너지를 이용한 고분자 마이크로구조물의 성형)

  • Yu, Hyun-Woo;Lee, Chi-Hoon;Ko, Jong-Soo;Shin, Bo-Sung;Rho, Chi-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.419-423
    • /
    • 2008
  • A new polymer replication technology using ultrasonic vibration is proposed and demonstrated. A commercial ultrasonic welder has been used in this experiment. Two different types of nickel molds have been fabricated: pillar type and pore type microstructures. Polymethyl methacrlylate (PMMA) has been used as the replication material and the optimal molding time was 2 sec and 2.5 sec for pillar-type and pore-type micromolds, respectively. Compared with the conventional polymer micromolding techniques, the proposed ultrasonic micromolding technique has the shortest processing time. In addition, only contact area between micromold and polymer substrate is melted so that the thermal shrinkage can be minimized. The fabricated PMMA microstructures have been very accurately replicated without vacuum. The proposed ultrasonic molding technique is a good alternative for high volume production.