• Title/Summary/Keyword: PMMA Composite Film

Search Result 20, Processing Time 0.031 seconds

Organic Compounds Vapor Detection Properties of MWCNT/PMMA Composite Film Detector (CNT/PMMA 복합막 검출기의 유기화합물 증기의 검출 특성)

  • Lim, Young Taek;Shin, Paik-Kyun;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.727-730
    • /
    • 2015
  • In this paper, we fabricated organic compounds detector using the MWCNT/PMMA (multi-walled carbon nanotube / polymethylmethacrylate) composite film. We used polymer film as a matrix material for the device framework, and introduced CNTs for reacting with the organic compounds resulting in changing electrical conductivity. Spray coating method was used to form the MWCNT/PMMA composite film detector, and pattern formation of the detector was done by shadow mask during the spray coating process. We investigated changes of electrical conductivity of the detector before and after the organic compounds exposure. Electrical conductivity of the detector tended to decrease after the exposure with various organic compounds such as acetone, tetrahydrofuran (THF), toluene, and dimethylformamide (DMF). Finally we conclude that organic compounds detection by the MWCNT/PMMA composite film detector was possible, and expect the feasibility of commercial MWCNT/PMMA composite film detector for various organic compounds.

Manufacture of PMMA/PBA and PBA/PMMA core Shell Composite Particles - Effect of emulsifier - (PMMA/PBA와 PBA/PMMA Core Shell 복합입자의 제조 - 유화제의 영향 -)

  • Seul, Soo Duk
    • Journal of Adhesion and Interface
    • /
    • v.11 no.3
    • /
    • pp.112-119
    • /
    • 2010
  • Poly(methyl methacrylate)/poly(butyl acrylate) PMMA/PBA core-shell composite particles were prepared by the emulsion polymerization of MMA and BA in the presence of different concentration of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the measured conversion and particle size distribution, morphology, average molecular weight distribution, observation of film formation and particle formation, glass transition temperature and physical properties of polymerized core-shell composition particles for using adhesive binder. When the concentration of 0.03 wt% surfactant, the conversions of PMMA and PBA core polymerization are excellent as 95.8% for PMMA core and 92.3% for PBA core. Core-shell composite particles are obtained 90.0% for PMMA/PBA core-shell composite particles and 89.0% for PMMA/PBA core-shell composite particles. It is considered that the core and shell particles are polymerized to be confirmed FT-IR spectra and average molecular weight measured with a GPC, formation of the composite particles is confirmed by the film formation from normal temperature, and composition of inside and outside of the composite particle is confirmed by TEM photograph. The synthesized polymer has two glass transition temperatures, suggesting that the polymer is composed of core polymer and shell polymer unlike general copolymers. It is considered that each core-shell composite particle can be used as a high functionality adhesion binder by the measurement of tensile strength and elongation.

A Study on Heat Dissipation Characteristics of PMMA Composite Films with Phase Change Material (상변화물질을 이용한 PMMA 복합필름의 방열 성능 향상에 관한 연구)

  • Kwon, Junhyuk;Yoon, Bumyong;Cho, Seung-hyun;Lee, Stephanie K.;Kim, Hyung-ick;Kim, Donghyun;Park, Kyungui;Suhr, Jonghwan
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.288-296
    • /
    • 2017
  • The focus of this study is to experimentally investigate the heat dissipation characteristics of poly (methyl methacrylate) (PMMA) composite films with phase change materials (PCM) to resolve heat build-up problems encountered in various electronic devices. In this study, two different types of phase change materials were used to fabricate the composite films by compression molding method and PCM paste sealing method then compared. It was observed in this study that the heat dissipation capability of PCM/PMMA composite films was remarkably enhanced by applying graphite sheet or graphene film into the composite due to their high thermal conductivity. These PCM/ PMMA composite films were attached on the hot spot inside smart phone and tested its surface temperature change according to time. The heat dissipation capability of PCM/PMMA composite film incorporated smart phone was increased 154% and hybrid PCM/PMMA composite film incorporated smart phone was increased 286% over the reference, respectively.

Electrical Conductivity Behavior of 6FDA-based Fluorinated Polyimide/PMMA-g-MWCNT Nanocomposite Film (6FDA를 포함한 불소계 폴리이미드와 PMMA가 그래프트된 카본나노튜브 나노복합필름의 전기 전도성 연구)

  • Yun, Sung-Jin;Im, Hyun-Gu;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • PMMA was grafted on MWCNT surface in order to prepare conducting film composed of 6FDAbased polyimide/MWCNT. The electrical conductivity of 6FDA-based polyimide/PMMA-g-MWCNT was investigated as a function of PMMA-g-MWCNT content. Dispersion of MWCNT in 6FDA-based polyimide composite film was better than the pristine MWCNT due to the interaction force between PMMA and 6FDA-based polyimide. Electrical conductivity was interpreted by percolation threshold theory. As a result, 6FDA-6FpDA/PMMA-g-MWCNT which have high critical exponents and low critical concentration showed better dispersion than polyimide composite material that contains DABA(diamino benzoic acid).

A Study on Mechanical Properties of MWNT/PMMA Nanocomposites Fabricated by Injectiion Molding (사출성형법으로 제작된 MWNT/PMMA 복합재의 기계적 물성에 관한 연구)

  • 이원준;이상의;김천곤
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.47-52
    • /
    • 2004
  • This paper established the procedure to fabricate the MWNT/PMMA nanocomposite by using together with injection molding and film casting processes. The fabrication process made it possible for MWNTs to be well dispersed in the PMMA matrix and also it could maintain the well-dispersed state effectively. And the mechanical material properties and SEM images of the fractural surface were observed. Moreover, a surfactant was used to disperse MWNTs more effectively and mechanical material properties were also investigated.

A Study on Transparent Polymer Composite Films with High Emissivity (고 열방사 투명 고분자 합성막 연구)

  • Kim, Jeong-Hwan;Shin, Dong-Kyun;Seo, Hwa-Il;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.29-33
    • /
    • 2013
  • We have fabricated transparent polymer composite films with high thermal emissivity, which can be used for heat dissipation of transparent electronics. PMMA (poly(methyl methacrylate)) solution with high transparency and thermal emissivity is mixed with various fillers (carbon nanotubes (CNTs), aluminum nitride (AlN), or silicon carbide (SiC)) with high thermal conductivity. We have achieved the thermal emissivity as high as 0.94 by the addition of CNTs. Compared with the PMMA film on glass, however, the addition of AlN or SiC is shown to rather decrease the thermal emissivity. It is also observed that the thickness of the PMMA film does not affect its thermal emissivity. To avoid any degradation of the thermal conductivity, therefore, the PMMA film thickness is desirable to be $1{\mu}m$. There also exists a tradeoff between the optical transmittance and thermal conductivity on the selection of the amount of fillers.

Studies on the Synthesis and Characteristic of Silica-PMMA Nano Hybrid Material (실리카-PMMA 나노 하이브리드 코팅액 제조 및 특성에 관한 연구)

  • Son, Dae Hee;Kim, Dae-Sung;Lee, Seung-Ho;Kim, Song Hyuk;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • In order to improve the surface hardness of transparent plastic films, an organic-inorganic hybrid coating solution was sunthesized by the sol-gel method. Coating solutions that were prepared colloidal silica (CS), poly methyl methacrylate (PMMA), vinyltrimethoxysilane (VTMS), and [3-(methacryloyloxy)]propyltrimethoxy silane (MAPTMS) was varied with synthesizing parameters such as kinds of organic silane and weight ratio of CS to PMMA. Such coating solution was bar coated on the PET film, cured, and investigated on the chemical and physical properties of coating film. The organic-inorganic hybrid coating solutions have better properties at the pencil hardness and adhesion of coating film than those of an organic material such as PMMA.

A Study on the Dispersion of Multi-walled Nanotube of MWNT/PMMA Nanocomposites (MWNT/PMMA 나노복합재료 제작시 MWNT의 분산에 관한 연구)

  • 김현철;이상의;김천곤;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.29-32
    • /
    • 2003
  • Multi -walled carbon nanotube(MWNT)/poly(methyl methacrylate) composites were fabricate d through film casting. Manufacturing process was established using a ultrasonic cleaner and a homogenizer. Acetone was used as a solvent to melt PMMA and mix with MWNT. The ultrasonic cleaner performed an important role in producing MWNT/MMA nanocomposites. Ultrasonic energy was utilized to disperse MWNT in acetone. Also, melting PMMA in acetone and mixing MWNT and PMMA were achieved using the homogenizer. It was confirmed that the nanohlbes were well dispersed in PMMA according to SEM images.

  • PDF

h Study on the Preparation of PMMA/PSt Composite Particles by Sequential Emulsion Polymerization (단계중합법에 의한 PMMA/PSt Composite Particle의 제조에 관한 연구)

  • 이선룡;설수덕
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.617-624
    • /
    • 2001
  • The core-shell composite latexes were synthesized by stage emulsion polymerization of methyl methacrylate (MMA) and styrene (St) with ammonium persulfate after preparing monomer pre-emulsion in the presence of anionic surfactant. However, in preparation of core-shell composite latex, several unexpected results are observed, such as, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve the disadvantages, We study the effect of initiator concentrations, surfactant concentrations, and reaction temperature on the core-shell structure of polymethyl methacrylate/polystyrene and polystyrene/polymethyl methacrylate. Particle size and particle size distribution were measured using particle size analyzer, and the morphology of the core-shell composite latex was determined using transmission electron microscope. Glass temperature was also measured using differential scanning calorimeter. To identify the core-shell structure, pH of the two composite latex solutions were measured.

  • PDF

Thermal Dissipation Property of Acrylic Composite Films Containing Graphite and Carbon Nanotube (흑연과 탄소나노튜브 함유 아크릴 복합체 박막의 방열 특성)

  • Kim, Junyeong;Kang, Chan Hyoung
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.3
    • /
    • pp.198-205
    • /
    • 2017
  • Thermal dissipation was investigated for poly methyl methacrylate (PMMA) composite films containing graphite and multi wall carbon nanotube(CNT) powders as filler materials. After mixing PMMA with fillers, solvent, and dispersant, the pastes were prepared by passing through a three roll mill for three times. The prepared pastes were coated $15{\sim}40{\mu}m$ thick on a side of 0.4 mm thick aluminium alloy plate and dried for 30 min at $150^{\circ}C$ in an oven. The content of fillers in dried films was varied as 1, 2, and 5 weight % maintaining the ratio of graphite and CNT as 1:1. Raman spectra from three different samples exhibited D, G and 2D peaks, as commonly observed in graphite and multi wall CNT. Among those peaks, D peak was prominent, which manifested the presence of defects in carbon materials. Thermal emissivity values of three samples were measured as 0.916, 0.934, and 0.930 with increasing filler content, which were the highest ever reported for the similar composite films. The thermal conductivities of three films were measured as 0.461, 0.523, and $0.852W/m{\cdot}K$, respectively. After placing bare Al plate and film coated samples over an opening of a polystyrene box maintained for 1 h at $92^{\circ}C$, the temperatures inside and outside of the box were measured. Outside temperatures were lower by $5.4^{\circ}C$ in the case of film coated plates than the bare one, and inside temperatures of the former were lower by $3.6^{\circ}C$ than the latter. It can be interpreted that the PMMA composite film coated Al plates dissipate heat quicker than the bare Al plate.