DOI QR코드

DOI QR Code

Organic Compounds Vapor Detection Properties of MWCNT/PMMA Composite Film Detector

CNT/PMMA 복합막 검출기의 유기화합물 증기의 검출 특성

  • Lim, Young Taek (School of Electrical Engineering, Inha University) ;
  • Shin, Paik-Kyun (School of Electrical Engineering, Inha University) ;
  • Lee, Sunwoo (Department of Electrical Information, Inha Technical College)
  • 임영택 (인하대학교 전기공학과) ;
  • 신백균 (인하대학교 전기공학과) ;
  • 이선우 (인하공업전문대학 전기정보과)
  • Received : 2015.10.13
  • Accepted : 2015.10.23
  • Published : 2015.11.01

Abstract

In this paper, we fabricated organic compounds detector using the MWCNT/PMMA (multi-walled carbon nanotube / polymethylmethacrylate) composite film. We used polymer film as a matrix material for the device framework, and introduced CNTs for reacting with the organic compounds resulting in changing electrical conductivity. Spray coating method was used to form the MWCNT/PMMA composite film detector, and pattern formation of the detector was done by shadow mask during the spray coating process. We investigated changes of electrical conductivity of the detector before and after the organic compounds exposure. Electrical conductivity of the detector tended to decrease after the exposure with various organic compounds such as acetone, tetrahydrofuran (THF), toluene, and dimethylformamide (DMF). Finally we conclude that organic compounds detection by the MWCNT/PMMA composite film detector was possible, and expect the feasibility of commercial MWCNT/PMMA composite film detector for various organic compounds.

Keywords

References

  1. H. K. Yoo, J. C. Park, and E. G. Lee, Architecture Institute of Korea, 21, 141 (2015).
  2. R. F. Hejazi, T. Husain, and F. I. Khan, J. of Hazard. Mater., B99, 287 (2003). [DOI: http://dx.doi.org/10.1016/S0304-3894(03)00062-1]
  3. J. L. Domingo and M. Nadal, Environ. Int., 35, 382 (2009). [DOI: http://dx.doi.org/10.1016/j.envint.2008.07.004]
  4. C. Ge, C. Xie, and S. Cai, Mat. Sci. Eng. B-Solid, 137, 53 (2007). [DOI: http://dx.doi.org/10.1016/j.mseb.2006.10.006]
  5. G. G. Huang, C. T. Wang, H. T. Tang, Y. S. Huang, and J. Yang, Anal. Chem., 78, 2397 (2006). [DOI: http://dx.doi.org/10.1021/ac051930+]
  6. K. Kanda and T. Maekawa, Sensor. Actuat. B-Chem., 108, 97 (2005). [DOI: http://dx.doi.org/10.1016/j.snb.2005.01.038]
  7. C. Dekker, Phys. Today, 5, 22 (1999).
  8. D. Janas, A. P. Herman, S. Boncel, and K.K.K. Koziol, Carbon, 73, 225 (2014). [DOI: http://dx.doi.org/10.1016/j.carbon.2014.02.058]
  9. S. Peng, K. Cho, P. Qi, and H. Dai, Chem. Phys. Lett., 387, 271 (2004). [DOI: http://dx.doi.org/10.1016/j.cplett.2004.02.026]
  10. A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, Compos. Sci. Technol., 62, 1993 (2002). [DOI: http://dx.doi.org/10.1016/S0266-3538(02)00129-X]
  11. H. H. So, J. W. Cho, and N. G. Sahoo, Eur. Polym. J., 43, 3750 (2007). [DOI: http://dx.doi.org/10.1016/j.eurpolymj.2007.06.025]
  12. L. Valentini, J. Biagiotti, J. M. Kenny, and S. Santucci, Compos. Sci. Technol., 63, 1149 (2003). [DOI: http://dx.doi.org/10.1016/S0266-3538(03)00036-8]
  13. H. W. Goh, S. H. Goh, G. Q. Xu, K. P. Pramoda, and W. D. Zhang, Chem. Phys. Lett., 373, 277 (2003). [DOI: http://dx.doi.org/10.1016/S0009-2614(03)00621-3]
  14. P. C. Ma, B. Z. Tang, and J. K. Kim, Carbon, 46, 1497 (2008). [DOI: http://dx.doi.org/10.1016/j.carbon.2008.06.048]
  15. B. Hu1, N. Hu, Y. Li, K. Akagi, W. Yuan, T. Watanabe, and Y. Cai, Nanoscale Res. Lett., 7, 402 (2012). [DOI: http://dx.doi.org/10.1186/1556-276X-7-402]
  16. K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, and Y. H. Lee, J. Electrochem. Soc., 149, A1058 (2002). [DOI: http://dx.doi.org/10.1149/1.1491235]
  17. X. D. Zhou, S. C. Zhang, W. Huebner, and P. D. Ownby, J. Mater Sci., 36, 3759 (2001). [DOI: http://dx.doi.org/10.1023/A:1017982018651]