• Title/Summary/Keyword: PM10 농도

Search Result 2,414, Processing Time 0.04 seconds

The Metallic Composition of PM2.5 and PM10 in a Northeast Region of Seoul During the Spring 2001 (2001년 봄철 서울시 북동부지점에서 관측한 중금속성분의 농도분포)

  • Choi, Gyoo-Hoon;Kang, Chang-Hee;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.23 no.6
    • /
    • pp.514-525
    • /
    • 2002
  • The analysis of heavy metals associated with both PM2.5 and PM10 fraction of aerosols was made from a northeast region of Seoul during the spring period of 2001. The mean concentrations of fine (PM2.5), coarse (PM10-PM2.5), and PM10 fraction were observed as 49.3${\pm}$29.2, 50.5${\pm}$35.0, and 95.5${\pm}$46.1 ${\mu}g$/m$^3$, respectively during this study period. According to the results of enrichment factor (EF) analysis between different particle fractions, major elements (including Fe, Ca, Na, and K) were found to exhibit EF values of less than 10. However, heavy metal components (like Zn and Pb) showed very high EF values. Comparison of fine/coarse (F/C) concentration ratio showed that Zn, Cr, Pb, and Ni have higher ratio values than others. The metallic composition of particles was also compared on both absolute and relative terms. The results of our analysis showed an evidence that the increase in the total metallic contents is prominent during the spring period due mostly to the Asian Dust event.

An Analysis of the Range of Brightness Temperature Differences Associated with Ground Based Mass Concentrations for Detecting the Large-scale Transport of Haze (광역적 이동 연무 탐지를 위한 지상 질량 농도를 고려한 적외채널 밝기온도차 경계값 범위 분석)

  • Kim, Hak-Sung;Chung, Yong-Seung;Cho, Jae-Hee
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.434-447
    • /
    • 2016
  • This study analyzed mass concentrations of PM10 and PM2.5, as measured at Tae-ahn and Gang-nae, Cheongju in central Korea over the period from 2011 to 2015. Higher mass concentrations of PM10, with the exception of dustfall cases during the period of winter and spring, reflected the influence of a prevailing westerly airflow, while the level of PM10 stayed at a low level in summer, reflecting the influence of North Pacific air mass and frequent rainfall. Accordingly, cases where a daily PM10 average of $81{\mu}gm^{-3}$ or over (exceeding the status of fine dust particles being 'a little bit bad') were often observed during the period of winter and spring, with more cases occurring in parts of Tae-ahn that are located close to the sources of pollutant emission in eastern China. Dustfall usually originated from dust storms made up of particles $2.5{\mu}m$ or over in diameter. However, anthropogenic haze displayed a high composition ratio of particulate less than $2.5{\mu}m$ in diameter. Accordingly, brightness temperature difference (BTD) values from the Communication, Ocean and Meteorological Satellite (COMS) were $-0.5^{\circ}K$ or over in haze with fine particulate. PM10 mass concentrations and NOAA 19 satellite BTD for haze cases were analyzed. Though PM10 mass concentrations were found to be lower than $200{\mu}g\;m^{-3}$, the mass concentration ratio of PM2.5/PM10 was measured as higher than 0.4 and BTD was found to be distributed in the range from -0.3 to $0.5^{\circ}K$. However, the BTD of dustfall cases exceeding $190{\mu}g\;m^{-3}$, were found to be less than 0.4 and BTD was found to be distributed in the range less than $-0.7^{\circ}K$. The result of applying BTD threshold values of the large-scale transport of haze proved to fall into line with the range over which aerosols of MODIS AOD and OMI AI were distributed.

Size distributions of suspended fine particles during cleaning in an office (사무실의 실내 청소 과정에서 부유하는 미세먼지의 크기분포)

  • Ji, Jun-Ho
    • Particle and aerosol research
    • /
    • v.14 no.2
    • /
    • pp.25-33
    • /
    • 2018
  • In this study, the concentration of fine indoor dust and the size distribution of fine indoor dust were analyzed by measuring the dust generated during the cleaning process of an indoor office. We measured $PM_{10}$, $PM_{2.5}$, and $PM_{1.0}$ and analyzed the size distributions of dust larger than $0.3{\mu}m$ in diameter during cleaning. The results showed that the concentration of $PM_{10}$ increased rapidly during cleaning, however $PM_{1.0}$ did not increase. Before cleaning with a broom, the fine dust concentration was about $50{\mu}g/m^3$, but increased to about $400{\mu}g/m^3$ as cleaning progressed. In the case of indoor cleaning with a vacuum cleaner, the concentration of $PM_{10}$ increased during the cleaning process and the increase of $PM_{2.5}$ was relatively small. $PM_{1.0}$ did not increase as in the case of cleaning the broom.

Changes in aerosol characteristics during 2006 ~ 2008 Asian dust events in Cheonan, Korea (2006 ~ 2008년 황사기간 중 천안시 대기 입자의 특성 변화)

  • Oh, Se-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1642-1647
    • /
    • 2009
  • Changes in aerosol characteristics during 2006 ${\sim}$2008 Asian dust events in Cheoan were investigated by measuring mass, ion and elemental concentrations of fine and coarse particles. The average mass concentrations of daily TSP, PM10, PM2.5 were 214.9, 160.3, and 95.9${\mu}\;g/m^3$during Asian dust events, which were 3.08, 2.58, and 1.95 times higher than Non-asian dust events. The maximum concentrations of TSP, PM10, and PM2.5 were 850.1, 534.4, and 233.3${\mu}\;g/m^3$, which were 12.19, 8.60, and 4.76 times higher, respectively. Increases in ion concentrations were not significant during Asian dust events, but elemental concentrations including soil components such as Fe, Al, Ti increased by 17.1 and 43.4 times for fine and coarse particles, respectively. The results clearly indicate that metallic components from soil constituents were the major components in Asian dusts sampled at Cheonan.

Mitigation Effect on Airborne Particulate Matter Concentration by Roadside Green Space Type and Impact of Wind Speed (도로변 녹지 유형별 미세먼지 농도 저감 효과와 이에 대한 풍속의 영향 연구)

  • Tae-Young Choi;Da-In Kang;Jaegyu Cha
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.437-449
    • /
    • 2023
  • This study measured PM10 concentrations and wind speeds in buffer green spaces and neighborhood parks located along the road, and compared them with roadside measurementresults to understand the effect of mitigating PM10 concentrations by type of green space and the influence of wind speeds on it. As a result of the analysis, the effect of mitigating PM10 concentration was different depending on the type of roadside green space, and an increase in wind speed had a significant effect on reducing PM10 concentration. In buffer green areas with high planting density, wind speed was low and PM10 stagnated inside, resulting in the highest concentration. On the other hand, green areas in neighborhood parks with relatively low planting density had high wind speeds and the lowest PM10 concentration. The non-green area within the neighborhood park recorded the highest wind speed, which was advantageous for the spread of PM10, but the concentration was higherthan that of the green area. Therefore, in orderto reduce PM10 concentration in roadside green space, it is necessary to create green space with good ventilation, and the combined effect of green space and wind speed seems to be more advantageous in reducing PM10 concentration. Green spaces capture and remove PM inside, contributing to reducing the concentration of PM outside. In order to manage PM in the entire city and on roads, it is necessary to increase planting density and leaf area in roadside green spaces, such as buffer green spaces, so that PM can be removed within the green spaces. However, in green spaces such as neighborhood parks that are actively used by city residents, in orderto minimize damage to users due to PM, it is desirable to create green spaces with a structure that allows PM to spread to the outside rather than stagnate inside.

Spatial Information Application Case for Appropriate Location Assessment of PM10 Observation Network in Seoul City (서울시 미세먼지 관측망 위치 적정성 평가를 위한 공간정보 활용방안)

  • Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.175-184
    • /
    • 2017
  • Recently, PM10 is becoming a main issue in Korea because it causes a variety of diseases, such as respiratory and ophthalmologic diseases. This research studied to spatial information application cases for evaluating the feasibility of the location for PM10 observation stations utilizing Geogrphic Information System(GIS) spatial analysis. The spatial Information application cases for optimal location assessment were investigated to properly manage PM10 observation stations which are closely related with public spatial data and health care. There are 31 PM10 observation stations in Seoul city and the observed PM10 data at these stations were utilized to understand the overall assessment of PM10 stations to properly manage using interpolation methods. The estimated PM10 using Inverse Distance Weighted(IDW) and Kriging techniques and the map of PM10 concentrations of monitoring stations in Seoul city were compared with public spatial data such as precipitation, floating population, elementary school location. On the basis of yearly, seasonal and daily PM10 concentrations were used to evaluate the feasibility analysis and the location of current PM10 monitoring stations. The estimated PM10 concentrations were compared with floating population and calculated 2015 PM10 distribution data using zonal statistical methods. The national spatial data could be used to analyze the PM10 pollution distribution and additional determination of PM10 monitoring sites. It is further suggested that the spatial evaluation of national spatial data can be used to determine new location of PM10 monitoring stations.

A Study on the PM10 and CO2 Concentrations at Public Places (일부 실내공간에서 PM10과 CO2의 농도 특성에 관한 연구)

  • Jung, Joon-sig;Park, Duckshin;Kim, Jong bum;Song, Hyea-suk;Park, Hyung-kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4335-4347
    • /
    • 2015
  • The objective of this study was to investigate $PM_{10}$ and $CO_2$ concentrations in the classrooms of 286 elementary schools in Suwon, Ansan, and Hwaseong in the province of Gyeonggi between August 2008 and December 2012. By gaining an understanding of the environmental factors that influence these concentrations, this study also aimed to establish a management plan for indoor air quality in schools, which substantially affects the health of elementary students. When the schools were classified by region, no statistically significant difference in $PM_{10}$ concentration was observed. However, $PM_{10}$ concentration was relatively high in industrial areas and low in rural areas. No difference in $CO_2$ concentration was observed among the surveyed cities. Analysis of annual $PM_{10}$ concentration showed that the highest values for Suwon and Hwaseong occurred in 2008 and 2009, respectively (p<0.01). In the case of Ansan, the highest concentration occurred during 2009, but the difference was not significant compared to the other years. Analysis of the annual $CO_2$ concentration of each city shows no significant difference among the cities (p-value=0.366,0.730,0.210). According to a time series analysis of $PM_{10}$ and $CO_2$ by season, from autumn 2008 to winter 2012, $PM_{10}$ concentration was high during 2009, then it gradually decreased until 2012, and started to increase again. While no difference in annual $CO_2$ concentration was observed, the concentration had a tendency to be higher in spring and winter than in summer. By analyzing the relationship between $PM_{10}$ and $CO_2$ and the environmental factors (years of construction, average students of classroom, temperature, and humidity), it showed a significant negative correlation was found between $CO_2$ and the environmental temperature and humidity, at -0.329 and -0.188, respectively (p<0.01).

Long-term Trends of the Concentrations of Mass and Chemical Composition in PM2.5 over Seoul (서울시 대기 중 초미세먼지 (PM2.5) 질량과 화학성분 농도의 장기 변동 추이)

  • Han, Sang Hee;Kim, Yong Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.143-156
    • /
    • 2015
  • The literature data of the mass concentrations of TSP, $PM_{10}$, and $PM_{2.5}$, and chemical composition of $PM_{2.5}$ (sulfate, nitrate, ammonium, OC, and EC) from 1985 and 2013 at Seoul were collected and the temporal trends were discussed in relation with the policy directions. Generally, the mass concentrations of TSP, $PM_{10}$, and $PM_{2.5}$ at Seoul have showed decreasing trends. However, it is not clear what might be the major reason(s) for the trends. The concentrations of ionic component in $PM_{2.5}$ showed different trends, sulfate being reduced during the 1990s but no trend during the 2000s. The concentrations of nitrate and ammonium were increasing during the 2000s. The concentrations of OC show no apparent trend while that of EC decreased. Further policy directions are suggested based on the temporal trends of the chemical composition in $PM_{2.5}$.

A Study on color characteristic of PM10 sample filter in ambient air sampling (대기중 PM10 포집여지의 색도특성에 관한 연구)

  • 정상진;장재철;심순섭
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.284-285
    • /
    • 2002
  • 입자상 오염물에 대한 대기 환경기준이 인체에 미치는 영향과 관련하여 총부유분진에서 PM10(10 미크론 이하의 입자) 및 PM2.5(2.5 미크론 이하 입자)의 미세입자 농도 범위로 변화되고 있다. 따라서 이들 미세입자 농도를 측정할 수 있는 정밀 측정법의 개발이 요구되고 있고 이들 측정기의 수요도 늘어갈 전망이다. (중략)

  • PDF

Characteristics of Indoor Particulate Matter Concentrations by Size at an Apartment House During Dusty-Day (황사 발생시 아파트 실내에서 미세먼지 크기별 농도 특성)

  • Joo, Sang-Woo;Ji, Jun-Ho
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • It is recommended for the public to stay at home and to close the doors and windows when a high-particulate-matter environment such as a yellow sand event occurs outside. However, there are lack of empirical studies describing how much outdoor PM infiltrates into a closed house and how much indoor PM an inhabitant is exposed to during the period. In this study, the $PM_{10}$ and $PM_{2.5}$ were measured at the kitchen in an apartment house by an optical particle counter for 3 days including a yellow sand event. The outdoor PMs and the outdoor wind speeds were referred from surrounding weather stations. We analyzed the penetration of $PM_{10-2.5}$ and $PM_{2.5}$ at the test house against the outdoor wind speed supposed corresponding to the change of air exchange rate. In addition, the effect of an indoor activity on change in the indoor PM was investigated. In result, the indoor $PM_{10-2.5}$ was very low even a yellow sand event occurred outside; rather, a contribution of indoor activities to increase in $PM_{10-2.5}$ was higher. In contrast, the indoor $PM_{2.5}$ fluctuated following the outdoor $PM_{2.5}$ trend at high wind speeds or remained almost constant at low wind speed.