• Title/Summary/Keyword: PM-10 particle

Search Result 610, Processing Time 0.028 seconds

Analysis of dust emission characteristic by drop impact on decomposed granite soil (낙하 충격에 의한 풍화토의 비산먼지 발생 특성 분석)

  • Min, Seul-Gi;Son, Young-Hwan;Park, Jae-Sung;Noh, Soo-Kack;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.39-45
    • /
    • 2014
  • Dust is mostly caused by human activity. The effect of natural factors on dust emission were studied in many research, but the little effort in researching artificial factors of dust emission. The object of study is to analysis dust emission characteristic by drop impact. Particle matter $10{\mu}m$ ($PM_{10}$) was measured by drop impact on paved soil with changing drop height, weight and drop size. Increasing drop height cause more $PM_{10}$ emission. Increasing drop weight cause more $PM_{10}$ emission but had limit weight for increasing dust emission. Because the exceed kinetic energy of drop weight penetrate the soil surface. The limit perimeter was exist that separating $PM_{10}$ emission aspect. Under limit perimeter, $PM_{10}$ emission was increasing while perimeter was increasing, but over limit perimeter showed the opposite aspect. Regression equations for estimating $PM_{10}$ with kinetic energy and perimeter were made under limit perimeter and over limit perimeter. The $R^2$ of those equations were 0.784, 0.743. The error has occurred between measured $PM_{10}$ and calculated $PM_{10}$ in the equation under limit perimeter. But using equation of case for over limit perimeter, PM10 can be estimated with kinetic energy and drop perimeter.

Comparison of particle collection characteristics in a wire-cylindrical wet electrostatic precipitator with and without a water film (와이어-실린더형 습식 전기집진기의 수막 유무에 따른 집진 특성 비교)

  • Woo, Chang Gyu;Cho, Won Ki;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.89-95
    • /
    • 2018
  • People's environmental concerns for fine particles in Korea lead to the strong necessity of improving the performance of environmental control systems. Wet electrostatic precipitators (ESPs) are considered as one of the alternatives to overcome the limit of previous dry ESPs, the re-entrainment of collected particles during rapping and back corona problem for high electrical resistivity dusts etc. In this study, a wire-cylindrical ESP with a thin water film has been developed. Particle collection characteristics were compared in the ESP with operations of water film on and off. Particle collection efficiencies at various applied voltages as well as voltage-current curves were almost the same in the ESP with and without a water film. Particle collection performance for PM1.0, PM2.5 and PM10 in the wet ESP with a water film was constantly maintained with operation time even in the high dust loading environment. This results indicate that a uniform water film in our wet ESP was successfully formed with a very thin layer without any dry spot and therefore could continuously clean the collected particles on the inner wall of the ESP without any performance degradation.

Verification of dilution ratio of the newly developed ejector-porous tube diluter for measurement of fine dust in coal-fired power plant stack (화력발전소 굴뚝 미세먼지 측정을 위해 개발한 이젝터-다공튜브 희석장치의 희석비 검증)

  • Shin, Dongho;Kim, Young-Hoon;Hong, Keejung;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo;Lee, Ga-Young;Chun, Sung-Nam;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.15 no.3
    • /
    • pp.105-113
    • /
    • 2019
  • The exhaust emissions from coal-fired power plants have received much attention because coal-fired power plants are the one of the largest sources of particulate matter (PM) emissions in South Korea. To measure the PM10 and PM2.5, we developed the novel diluter which is comprised of ejector and porous tube in series. The dilution ratio must be defined to calculate particle concentrations of the sampled air as well as to probe match for the isokinetic sampling. For this reason, we verified the dilution ratio of the developed diluter by the flow rate, numerical solution, gas concentration and particle concentration. The ejector-supplied flow rates were 10-50 L/min and the porous tube-supplied flow rates were 30, 50 L/min in this study. All methods above showed similar dilution ratios to each other within 10 % error rate. The dilution ratio was confirmed by comparing mass concentrations before and after the dilution process.

Comparison of PM1, PM2.5, PM10 Concentrations in a Mountainous Coastal City, Gangneung Before and After the Yellow Dust Event in Spring (봄철 황사 전후 산악연안도시, 강릉시에서 PM1, PM2.5, PM10의 농도비교)

  • Choi, Hyo
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.633-645
    • /
    • 2008
  • In order to investigate the variations and corelation among $PM_{10},\;PM_{2.5}\;and\;PM_1$ concentrations, the hourly concentrations of each particle sizes of 300nm to $20{\mu}m$ at a city, Gangneung in the eastern mountainous coast of Korean peninsula have been measured by GRIMM aerosol sampler-1107 from March 7 to 17, 2004. Before the influence of the Yellow Dust event from China toward the city, $PM_{10},\;PM_{2.5}\;and\;PM_1$, concentrations near the ground of the city were very low less than $35.97{\mu}g/m^3,\;22.33{\mu}g/m^3\;and\;16.77{\mu}g/m^3$, with little variations. Under the partial influence of the dust transport from the China on March 9, they increased to $87.08{\mu}g/m^3,\;56.55{\mu}g/m^3\;and\;51.62{\mu}g/m^3$. $PM_{10}$ concentration was 1.5 times higher than $PM_{2.5}$ and 1.85 times higher than $PM_1$. Ratio of $(PM_{10}-PM_{2.5})/PM_{2.5}$ had a maximum value of 1.49 with an averaged 0.5 and one of $(PM_{2.5}-PM_1)/PM_1$ had a maximum value of 0.4 with an averaged 0.25. $PM_{10}\;and\;PM_{2.5}$ concentrations were largely influenced by particles smaller than $2.5{\mu}m\;and\;1{\mu}m$ particle sizes, respectively. During the dust event from the afternoon of March 10 until 1200 LST, March 14, $PM_{10},\;PM_{2.5}\;and\;PM_1$ concentrations reached $343.53{\mu}g/m^3,\;105{\mu}g/m^3\;and\;60{\mu}g/m^3$, indicating the $PM_{10}$ concentration being 3.3 times higher than $PM_{2.5}$ and 5.97 times higher than $PM_1$. Ratio of $(PM_{10}-PM_{2.5})/PM_{2.5}$ had a maximum value of 7.82 with an averaged 3.5 and one of $(PM_{2.5}-PM_1)/PM_1$, had a maximum value of 2.8 with an averaged 1.5, showing $PM_{10}\;and\;PM_{2.5}$ concentrations largely influenced by particles greater than $2.5{\mu}m\;and\;1{\mu}m$ particle sizes, respectively. After the dust event, the most of PM concentrations became below $100{\mu}g/m^3$, except of 0900LST, March 15, showing the gradual decrease of their concentrations. Ratio of $(PM_{10}-PM_{2.5})/PM_{2.5}$ had a maximum value of 3.75 with an averaged 1.6 and one of $(PM_{2.5}-PM_1)/PM_1$ had a maximum value of 1.5 with an averaged 0.8, showing the $PM_{10}$ concentration largely influenced by corse particles than $2.5{\mu}m$ and the $PM_{2.5}$ by fine particles smaller than $1{\mu}m$, respectively. Before the dust event, correlation coefficients between $PM_{10},\;PM_{2.5}\;and\;PM_1$, were 0.89, 0.99 and 0.82, respectively, and during the dust event, the coefficients were 0.71, 0.94 and 0.44. After the dust event, the coefficients were 0.90, 0.99 and 0.85. For whole period, the coefficients were 0.54, 0.95 and 0.28, respectively.

Study on Characteristics of fine Particle (PM10) Concentration in Busan for Five Years (최근 5년간 부산지역의 미세먼지(PM10)농도 특성에 관한 연구)

  • Jeon, Byung-Il;Hwang, Yong-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.6
    • /
    • pp.533-542
    • /
    • 2007
  • The general characteristics of fine particle and meteorological analysis of high $PM_{10}$ concentration day which was over $100{\mu}g/m^3$ in busan were investigated for period of 2002 to 2006. Annual mean concentration including Asian dust day was $68.7{\mu}g/m^3$ in 2002, $54.6{\mu}g/m^3$ in 2003, $60.4{\mu}g/m^3$ in 2004, $58.3{\mu}g/m^3$ in 2005 and $58.8{\mu}g/m^3$ in 2006, respectively. Seasonal mean concentration was $73.4{\mu}g/m^3$ in Springtime, $56.8{\mu}g/m^3$ in Summertime, $55.5{\mu}g/m^3$ in Wintertime and $54.4{\mu}g/m^3$ in Falltime, respectively. Mean concentration for land use was 69.2 $37.0{\mu}g/m^3$ in industrial area, 64.2 $35.5{\mu}g/m^3$ in rural area, 62.6 $34.4{\mu}g/m^3$ in commercial area and 55.3 $33.8{\mu}g/m^3$ in residential area, respectively. Frequency of synoptic pattern for high $PM_{10}$ concentration day was 18 days(16.7%) in I type, 27 days(25.0%) in II type, 10 days(9.3%) in III type, 5 days(4.6%) in IV type, 13 days(12.0%) in V type and 29 days (26.9%) in VI type, respectively. Frequency of long range transport sector for high $PM_{10}$ concentration day was 9 days(8.3%) in I type, 64 days(59.5%) in II type, 34 days(31.5%) in III type, 1 days in IV type, 0 days, respectively.

The Properties of Roadway Particles from the Interaction between the Tire and the Road Pavement (실제 도로 주행과정에서 타이어와 도로의 마찰에 의해서 발생하는 미세입자의 특성연구)

  • Lee, Seok-Hwan;Kim, Hong-Suk;Park, Jun-Hyuk;Cho, Gyu-Baek
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.131-141
    • /
    • 2012
  • A large fraction of urban $PM_{10}$ concentrations is due to non-exhaust traffic emissions including road dust, tire wear particles, and brake lining particles. Although potential health and environmental impacts associated with tire wear debris have increased, few environmentally and biologically relevant studies of actual tire wear debris have been conducted. Tire wear particles (TWP) are released from the tire tread as a result of the interaction between the tire and the pavement. Roadway particles (RP), meanwhile, are particles on roads composed of a mixture of elements from tires, pavements, fuels, brakes, and environmental dust. The main objective of present study is to identify the contribution of tires to the generation of RP and to assess the potential environmental and health impacts of this contribution. First, a mobile measurement system was constructed and used to measure the RP on asphalt roads according to vehicle speed. The equipment of the mobile system provides $PM_{10}$ concentrations by Dusttrak DRX and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and an aerosol particle sizer (APS). When traveling on an asphalt road at constant speed, there is a clear tendency for $PM_{10}$ concentration to increase slightly in accordance with an increase in the vehicle speed. It was also found that considerable brake wear particles and particles from tire/road interface were generated by rapid deceleration of the vehicle. As a result, the $PM_{10}$ concentration and particle number of ultra-fine particles were measured to be very high.

Concentrations of Particulate Matter Exposed to Farm Workers in the Broiler Houses (육계사 내 작업자의 미세먼지 노출량 현장모니터링)

  • Seo, Hyo-Jae;Oh, Byung-Wook;Kim, Hyo-Cher;Sin, So-Jung;Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.27-37
    • /
    • 2020
  • As domestic meat consumption increases, the broiler production industry has been larger and denser. The concentration of particulate matter (PM) and harmful gases generated is also increasing inside livestock house. However, the current research status of PM exposed to farm workers and the health effects are in the early stage. To understand PM concentration affecting workers in the broiler house, field monitoring was conducted according to its size distributions. Concentrations of PM10, PM2.5, and TD (Total Dust) were monitored using personal air samplers with teflon filter during working and moving periods considering the ventilation systems of 6 broiler houses. The purpose of this study is to monitor the PM concentration in the experimental broiler houses operated by forced ventilation system generally used in Korea and to evaluate the regional concentrations through airflow pattern. The PM concentrations were increased from inlet to outlet vents resulting in 1,872 of TD, 1,385 of PM10, and 209 ㎍/㎥ of PM2.5, respectively. The TD and PM10 concentrations were increased when the workers and broilers were moving. Among them, the particle size that occupied the largest amount of PM was 13.75 ㎛. These results suggest that personal protection equipments are important to reduce the health effect from PM inhalation.

Evaluation of accumulated particulate matter on roadside tree leaves and its metal content (가로수 수종별 잎의 미세먼지 축적량 및 금속 원소 함량 평가)

  • Kwon, Seon-Ju;Cha, Seung-Ju;Lee, Joo-Kyung;Park, Jin Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.161-168
    • /
    • 2020
  • It is known that different plant species have ability to deposit different amounts of particulate matter (PM) on their leaves and plants can absorb heavy metals in PM through their leaves. Heavy metals in PM can have toxic effect on human body and plants. Therefore, PM on different roadside trees at Chungbuk national University including box tree (Buxus koreana), yew (Taxus cuspidate), royal azalea (Rhododendron yedoense), and retusa fringetree (Chionanthus retusa) was quantified based on particle size (PM>10 and PM2.5-10). The metal concentration in PM accumulated on leaves was analyzed using inductively coupled plasma-mass spectroscopy. In this study, the mass of PM>10 deposited on the surface of the tree leaves ranged from 6.11 to 32.7 ㎍/㎠, while the mass of PM2.5-10 ranged from 0 to 14.8 ㎍/㎠. The royal azaleas with grooves and hair on the leaf surface retained PM particles for longer time, while the yews and box trees with wax on leaf surfaces accumulated more PM. The PM contained elements in crustal material such as Al, Ca, Mg, and Fe and heavy metals including Cu, Pb and Zn. The concentration of elements in crustal material was higher in the coarser size, while heavy metal concentration was relatively higher in the finer size fraction. The Mn, Cd, Cu, Ni, Pb, and Zn concentrations of leaves and PM2.5-10 were significantly correlated indicating that PM was taken up through tree leaves.

Performance Characteristics of Louver Dust Collectors (루버 집진기의 성능특성)

  • Woo, Sang-Hee;Kim, Jong Bum;Park, Tong-Il;Yook, Se-Jin;Kwon, Soon Bark;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.11-20
    • /
    • 2016
  • A large amount of wear dust generated during train operation is a major dust source in urban railway tunnels. To check possibility of a louver dust collector for the removal of dust in the railway tunnel, five louver dust collector models were designed and their performance was tested in a wind tunnel. JIS Z 8901 Class 8 dust was used as a test dust. Pressure drop and particle collection efficiency were evaluated with the face velocity ranging from 1 m/s to 4 m/s. At this low velocity range, particle collection efficiency of the louver dust collector was found to be insensitive to air velocity and design parameters. Pressure drop was under 40 Pa, and $PM_{10}$ and $PM_{2.5}$ collection efficiencies were approximately 50% and 30%, respectively.

A Study on the Characteristics of the Atmospheric Environment in Suwon Based on GIS Data and Measured Meteorological Data and Fine Particle Concentrations (GIS 자료와 지상측정 기상·미세먼지 자료에 기반한 수원시 지역의 도시대기환경 특성 연구)

  • Wang, Jang-Woon;Han, Sang-Cheol;Mun, Da-Som;Yang, Minjune;Choi, Seok-Hwan;Kang, Eunha;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1849-1858
    • /
    • 2021
  • We analyzed the monthly and annual trends of the meteorological factors(wind speeds and directions and air temperatures) measured at an automated synoptic observation system (ASOS) and fine particle (PM10 and PM2.5) concentrations measured at the air quality monitoring systems(AQMSs) in Suwon. In addition, we investigated how the fine particle concentrations were related to the meteorological factors as well as urban morphological parameters (fractions of building volume and road area). We calculated the total volume of buildings and the total area of the roads in the area of 2 km × 2 km centered at each AQMS using the geographic information system and environmental geographic information system. The analysis of the meteorological factors showed that the dominant wind directions at the ASOS were westerly and northwesterly and that the average wind speed was strong in Spring. The measured fine particle concentrations were low in Summer and early Autumn (July to September) and high in Spring and Winter. In 2020, the annual mean fine particle concentration was lowest at most AQMSs. The fine particle concentrations were negatively and weakly correlated with the measured wind speeds and air temperatures (the correlation between PM2.5 concentrations and air temperatures was relatively strong). In Suwon city, at least for 6 AQMSs except for the RAQMS 131116 and AQMS 131118, the PM10 concentrations were affected mainly by the transport from outside rather than primary emission from mobile sources or wind speed decrease caused by buildings and, in the case of PM2.5, vise versa.