• 제목/요약/키워드: PM-10 particle

검색결과 610건 처리시간 0.025초

습도 변화에 따른 에어로졸의 농도 및 크기의 변화경향 파악 (Change of the Size-Resolved Aerosol Concentration Due to Relative Humidity)

  • 정창훈;박진희;김용표
    • 한국입자에어로졸학회지
    • /
    • 제9권2호
    • /
    • pp.69-78
    • /
    • 2013
  • In this study, the atmospheric aerosol concentration measured at different relative humidity levels was analyzed. Using an optical particle counter, PM10 and PM2.5 concentration as well as particle size distribution were measured and the relation between these size resolved data and relative humidity was studied. The results showed that mass concentration increases as relative humidity increases. The comparison between PM1, PM2.5 and PM10 showed that the fine particles grow more than coarse particles as relative humidity increases. The results also showed that PM10-2.5 and relative humidity do not show close correlation, which means that the mass increase of PM10 at high relative humidity is mainly due to the growth of PM2.5.

Development of a Real-time Monitoring Device for Measuring Particulate Matter

  • Kim, Dae Seong;Cho, Young Kuk;Yoon, Young Hun
    • 한국입자에어로졸학회지
    • /
    • 제10권1호
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, we have developed a real-time monitoring device for measuring $PM_{10/2.5/1}$ of ambient aerosol particles. The real-time PM (Particulate Matter) monitor was based on the light scattering method and had 16 channels in particle size. The laboratory and field tests were carried out to evaluate the performance of the PM monitor developed. Arizona Road Dust particles ranging from diameter of 0.1 to $20{\mu}m$ were generated as test particles in the laboratory test. The field test was carried out at the Seoul Meteorological Observatory. We can obtain the particle size and number concentration (particle size distribution) only from the real-time PM monitor developed. Therefore, the average density of aerosol particles was used to obtain the PM data from the particle size distribution. The $PM_{10/2.5/1}$ results of the PM monitor were compared with the data of the Grimm Dust Monitor (Model 1.108) and a beta ray gauge (Thermo Fisher Scientific). As a result, it was shown that the $PM_{10/2.5/1}$ results obtained by the real-time PM monitor agreed well with the data of the reference devices, and overall, the real-time PM monitor could be used as a PM monitoring device for real-time monitoring of the ambient particles.

Ionic Compositions of PM10 and PM2.5 Related to Meteorological Conditions at the Gosan Site, Jeju Island from 2013 to 2015

  • Song, Jung-Min;Bu, Jun-Oh;Lee, Jae-Yun;Kim, Won-Hyung;Kang, Chang-Hee
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권4호
    • /
    • pp.313-321
    • /
    • 2017
  • $PM_{10}$ and $PM_{2.5}$ were collected at the Gosan Site on Jeju Island from 2013 to 2015, and their ionic and elemental species were analyzed to examine the variations in their chemical compositional characteristics related to different meteorological conditions. Concentrations of nss-$SO_4{^{2-}}$ and $NH_4{^+}$ were respectively 6.5 and 4.7 times higher in the fine particle mode ($PM_{2.5}$) compared to the coarse particle mode ($PM_{10-2.5}$), however $NO_3{^-}$ concentrations were 2.4 times higher in the coarse mode compared to the fine particle mode. During Asian dust days, the concentrations of nss-$Ca^{2+}$ and $NO_3{^-}$ increased to 8.2 and 5.0 times higher in $PM_{10}$, and 3.5 and 6.0 times higher in $PM_{2.5}$, respectively. During haze days, the concentrations of secondary pollutants increased by 3.1-4.7 and 3.2-7.9 in $PM_{10}$ and $PM_{2.5}$, respectively, and they were, respectively, 1.2-2.1 and 0.9-2.1 times higher on mist days. The aerosols were acidified largely by sulfuric and nitric acids, and neutralized mainly by ammonia in the fine particle mode during the haze days, but neutralized by calcium carbonate in coarse particle mode during the Asian dust days. Clustered back trajectory analysis showed that concentrations of nss-$SO_4{^{2-}}$, $NO_3{^-}$, and $NH_4{^+}$ were relatively high when air masses travelled from China.

바이오디젤의 미세입자 배출특성 (Nano Particle Emission Charataristics of Biodiesel)

  • 송호영;이민호;김재권;정충섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.199.2-199.2
    • /
    • 2010
  • Biodiesels are well-known as alternative fuels. also we know that biodiesels increase NOx and reduce PM(Particulate Matter) by previous many studies. But PM in most these studies was considered about the mass. In this study, We have performed experimental test for PM and exhaust emission by mixed ratio of biodiesel in heavy duty diesel engine. PM was investigated by The nano particle number and the mass. The mass of PM was evaluated by using the standard gravimetric method, The number of PM was evaluated by using the EEPS(Engine Exhaust Particle Sizer), on the ESC(European Steady Cycle) mode. Sampled gas through dilutor was directly extracted from tail pipe and EEPS measured diluted exhaust gas. Biodiesel is made up of used cooking oil. Diesel as base fuel was sold on market and contains 2% biodiesel. The mass of PM was reduced 10% and the nano particle number was increased 5%. The particle number less than 40nm was increased, but the particle number more than 40nm is decreased.

  • PDF

Particle size distributions and concentrations above radiators in indoor environments: Exploratory results from Xi'an, China

  • Chen, Xi;Li, Angui
    • Environmental Engineering Research
    • /
    • 제20권3호
    • /
    • pp.237-245
    • /
    • 2015
  • Particulate matter in indoor environments has caused public concerns in recent years. The objective of this research is to explore the influence of radiators on particle size distributions and concentrations. The particle size distributions as well as concentrations above radiators and in the adjacent indoor air are monitored in forty-two indoor environments in Xi'an, China. The temperatures, relative humidity and air velocities are also measured. The particle size distributions above radiators at ten locations are analyzed. The results show that the functional difference of indoor environments has little impact on the particle size distributions above radiators. Then the effects of the environmental parameters (particle concentrations in the adjacent indoor air, temperatures, relative humidities and air velocities) on particle concentrations above radiators are assessed by applying multiple linear regression analysis. Three multiple linear regression models are established to predict the concentrations of $PM_{10}$, $PM_{2.5}$ and $PM_1$ above radiators.

미세먼지 입경농도 분포의 지역별 특성 (Regional Characteristics of Particle Size Distribution of PM10)

  • 이용기;이기종;이재성;신은상
    • 한국대기환경학회지
    • /
    • 제28권6호
    • /
    • pp.666-674
    • /
    • 2012
  • The purpose of this study is to propose management strategies to lower the level of $PM_{10}$ concentration. First, this study analyzes the characteristics of particle sizes in three different areas, the residential, the roadside, and the industrial areas. Second, it has examined the size of particles which can influence on the increase of $PM_{10}$ concentration level. The distribution of particle size for $PM_{10}$ concentration was not different by regions. The highest portion in the observed $PM_{10}$ is near $0.3{\mu}m$. In addition, both near $2.5{\mu}m$ and near $5.0{\mu}m$ are found higher in portion. The fractions of $PM_{1.0}$ and $PM_{2.5}$ in $PM_{10}$ are 68.2% and 75.8% respectively. The fraction of $PM_{1.0}$ in $PM_{2.5}$ is 89.8%. The particle diameters contributed to the increase of $PM_{10}$ concentration are different by regions. In the residential area, the sizes of near $0.6{\mu}m$ and near $3.3{\mu}m$ particles are found to be the cause for the increase of $PM_{10}$ concentration level. However the particle sizes for the increase of $PM_{10}$ concentration level are $0.8{\mu}m$ and $0.5{\mu}m$ in roadside and industrial area respectively. Therefore, fine particles are found as the key factors to raise $PM_{10}$ concentration level in the two areas, while both fine and coarse particles are in the residential areas. When examined the $PM_{10}$ concentration level change, it was categorized by two different time zones, the high concentration level time and the lower concentration time. In high concentration time, the $PM_{10}$ concentration has increased in the morning in the residential and roadside areas. On the contrary, the level has increased in the evening in the industrial area. In low concentration time, the level of $PM_{10}$ concentration in the roadside area is significantly higher in the morning than the concentration level of other times. There is no significantly different concentration level found in the both residential and industrial areas throughout the day.

서울과 외국 대도시의 미세입자 조성 비교 (Comparison of the fine particle concentrations in Seoul and other foreign mega-cities)

  • 홍선예;이정진;이지연;김용표
    • 한국입자에어로졸학회지
    • /
    • 제4권1호
    • /
    • pp.1-7
    • /
    • 2008
  • Temporal trends of the PM10 and PM2.5 mass concentrations, and the concentrations of chemical species (sulfate, nitrate, ammonium, OC, and EC) in PM2.5 at Seoul are compared with the reported results from other mega cities in the world. The mass concentrations of PM10 and PM2.5 at Seoul show decreasing trend. However, the concentration levels are still higher than other cities except Beijing. The sulfate concentration at Seoul has decreased while those of nitrate and ammonium have increased. The concentrations of OC and EC show no apparent trend.

  • PDF

광산란방식을 이용한 미세먼지 실시간 모니터링 장치 개발 및 성능평가 (Development and Performance Evaluation of a Real-time PM Monitor based on Optical Scattering Method)

  • 강두수;오정은;이상열;신희준;봉하경;김대성
    • 한국입자에어로졸학회지
    • /
    • 제14권4호
    • /
    • pp.107-119
    • /
    • 2018
  • In this study, we have developed a real-time monitoring device for measuring PM10 and PM2.5 of ambient aerosol particles. The real-time PM monitor (SENTRY Dust Monitor) uses the optical scattering method and has 16 channels in particle size. The laboratory and field tests were carried out to evaluate the developed SENTRY Dust Monitor. Arizona Test Dust particles were used as test particles in the laboratory test and the field test was carried out at the Jongno-gu Observatory in Seoul. The measurements of PM10 and PM2.5 concentrations obtained by SENTTRY Dust Monitor were compared with Grimm Dust Monitor (Model 1.108) and a beta ray gauge. It was shown that the PM10 and PM2.5 concentrations obtained by SENTRY Dust Monitor agree well with that of the reference devices. Based on the results obtained in this study, it could be concluded that the SENTRY Dust Monitor can be used as a PM monitoring device for real-time monitoring of the ambient aerosols.

발파해체현장에서 발생하는 순간분진의 입경분포 특성 (Characteristics of Particle Size Distributions Generated in the Vicinity of Building Blasting Demolition Sites)

  • 이경희;김효진;박찬규;고광백
    • 한국환경과학회지
    • /
    • 제18권1호
    • /
    • pp.41-47
    • /
    • 2009
  • In building demolition work, major dust-generating activities are blasting concrete and rock. The aim of this study was to find the characteristic of particle size of dusts which were generated during building demolition work using explosion. The DustMate of the Turnkey-Instruments Ltd. was used for particulate size-selective sampling of the four sites. TSP(Total Suspended Particle), PM10(Particle Matter $10{\mu}m$), PM2.5(Particle Matter $2.5{\mu}m$), and PM1.0(Particle Matter $1.0{\mu}m$) were measured during building demolition work using explosion. The large particulate (higher than the diameter $10{\mu}m$) showed to be higher than 50%. The particulate ranged from $10{\mu}m\;to\;2.5{\mu}m$ showed about 30-40%. PM2.5 was not scarcely detected in the samples collected for building demolition work using explosion. We conclude that the dust generated during building demolition work using explosion has not most respirable particulate.

부산지역 봄철 주중/주말의 PM10과 PM2.5 질량농도와 금속이온농도 특성 (Characteristics of the Springtime Weekday/Weekend on Mass and Metallic Elements Concentrations of PM10 and PM2.5 in Busan)

  • 전병일
    • 한국환경과학회지
    • /
    • 제24권6호
    • /
    • pp.777-784
    • /
    • 2015
  • This study investigates weekday/weekend characteristics of $PM_{10}$ and $PM_{2.5}$ concentration and metallic elements in Busan in the springtime of 2013. $PM_{10}$ concentration on weekday/weekend were 77.54 and $67.28{\mu}g/m^3$, respectively. And $PM_{2.5}$ concentration on weekday/weekend were 57.81 and $43.83{\mu}g/m^3$, respectively. Also, $PM_{2.5}/PM_{10}$ concentration ratio on weekdays/weekend was 0.75 and 0.65, respectively. The contribution rates of Na to total metallic elements in $PM_{10}$ on weekday/weekend were 38.3% and 38.9%, respectively. It would be useful in control effectively with management of urban fine particle to understand characteristics of fine particle concentration on weekday/weekend.