• Title/Summary/Keyword: PM%28Particulate Matters%29

Search Result 2, Processing Time 0.017 seconds

A Study on the Concentration of Fine Particles and Heavy Metals in Iron Works (제철소 주변지역의 대기 중 미세먼지 및 중금속 농도에 관한 연구)

  • Cho, Tae-Jin;Jeong, Man-Ho;Jeon, Jun-Min;Son, Bu-Soon
    • Journal of Environmental Science International
    • /
    • v.18 no.4
    • /
    • pp.401-409
    • /
    • 2009
  • The results of particulate matters level and heavy metal concentration, which surveyed in Gwang-Yang, Dang-Jin steel industry area, are as follows; The $PM_{2.5}$, $PM_{10}$ of exposure area are $22.3{\mu}g/m^3$, $40.4{\mu}g/m^3$ each in Kum-Ho dong, and $28.1{\mu}g/m^3$, 51.5 each in Jung dong. The $PM_{2.5}$, $PM_{10}$ of control area are $16.4{\mu}g/m^3$, $29.5{\mu}g/m^3$ each in Bonggang-myeon. The level is higher in exposure area than control area. In case of Dang Jin, the concentration of $PM_{10}$ and $PM_{2.5}$ is higher in exposure area than control area ($PM_{2.5}-20.4{\mu}g/m^3$, $PM_{10}-39.2{\mu}g/m^3$). The Pb level of Dang Jin area is higher in exposure area ($0.13{\mu}g/m^3$) than control area ($0.1{\mu}g/m^3$) and both Gwang-Yang and Dang-Jin area lower level than the Guideline level of Korea EPA.

Study on PM10, PM2.5 Reduction Effects and Measurement Method of Vegetation Bio-Filters System in Multi-Use Facility (다중이용시설 내 식생바이오필터 시스템의 PM10, PM2.5 저감효과 및 측정방법에 대한 연구)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.80-88
    • /
    • 2020
  • With the issuance of one-week fine dust emergency reduction measures in March 2019, the public's anxiety about fine dust is increasingly growing. In order to assess the application of air purifying plant-based bio-filters to public facilities, this study presented a method for measuring pollutant reduction effects by creating an indoor environment for continuous discharge of particle pollutants and conducted basic studies to verify whether indoor air quality has improved through the system. In this study conducted in a lecture room in spring, the background concentration was created by using mosquito repellent incense as a pollutant one hour before monitoring. Then, according to the schedule, the fine dust reduction capacity was monitored by irrigating for two hours and venting air for one hour. PM10, PM2.5, and temperature & humidity sensors were installed two meters front of the bio-filters, and velocity probes were installed at the center of the three air vents to conduct time-series monitoring. The average face velocity of three air vents set up in the bio-filter was 0.38±0.16 m/s. Total air-conditioning air volume was calculated at 776.89±320.16㎥/h by applying an air vent area of 0.29m×0.65m after deducing damper area. With the system in operation, average temperature and average relative humidity were maintained at 21.5-22.3℃, and 63.79-73.6%, respectively, which indicates that it satisfies temperature and humidity range of various conditions of preceding studies. When the effects of raising relatively humidity rapidly by operating system's air-conditioning function are used efficiently, it would be possible to reduce indoor fine dust and maintain appropriate relative humidity seasonally. Concentration of fine dust increased the same in all cycles before operating the bio-filter system. After operating the system, in cycle 1 blast section (C-1, β=-3.83, β=-2.45), particulate matters (PM10) were lowered by up to 28.8% or 560.3㎍/㎥ and fine particulate matters (PM2.5) were reduced by up to 28.0% or 350.0㎍/㎥. Then, the concentration of find dust (PM10, PM2.5) was reduced by up to 32.6% or 647.0㎍/㎥ and 32.4% or 401.3㎍/㎥ respectively through reduction in cycle 2 blast section (C-2, β=-5.50, β=-3.30) and up to 30.8% or 732.7㎍/㎥ and 31.0% or 459.3㎍/㎥ respectively through reduction in cycle 3 blast section (C-3, β=5.48, β=-3.51). By referring to standards and regulations related to the installation of vegetation bio-filters in public facilities, this study provided plans on how to set up objective performance evaluation environment. By doing so, it was possible to create monitoring infrastructure more objective than a regular lecture room environment and secure relatively reliable data.