• Title/Summary/Keyword: PLS.

Search Result 1,848, Processing Time 0.057 seconds

Validating Dozer Productivity Computation Models (도저 생산성 연산모델 비교 연구)

  • Kim, Ryul-Hee;Park, Young-Jun;Lee, Dong-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.531-540
    • /
    • 2019
  • Existing dozer productivity computation models use different input variables, formulas, productivity correction factors, and experimental data source. This paper presents a method that characterizes the productivity outputs obtained by the PLS model and the Caterpillar model that are accepted as industry standards. The method identifies the input variables to be collected from the site, the performance charts to be referenced, and the formulas and implements them in a single computational tool. This study verifies that the PLS model may replace the manual computational process of Caterpillar model by eliminating reliance on graphics manipulation. Replacing the Caterpillar model with the PLS model and implementing the process as a function contributes to assess the productivity of a dozer timely by encouraging to utilize real-time information collected directly from the site. This study allows researchers and practitioners to effectively deal with the values of productivity correction factors collected from the job site and to control the productivity. The practicality and effectiveness of the method have been validated by applying to a project case.

Analyzing College Students' Perception on English Classes Using TED : using PLS-SEM (TED 활용 영어학습에 대한 대학생의 인식 분석: PLS-SEM 적용)

  • Joo, Meeran
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.359-367
    • /
    • 2022
  • The purpose of this study is to examine the perception of college students about English classes using TED talks and to examine whether TED talks are appropriate as a learning material for college English. As a college English subject, 50-60 minutes of online classes were conducted for one semester where TED talks were used, and the data collected by conducting a survey on learners' English learning motivation, interest, attitude, satisfaction, and learning effect were analyzed utilized SMART PLS 3. The results are as follows. First, English learning motivation had a statistically significant effect on learning attitude while it did not affect the learning satisfaction. Second, the level of interest in the TED Talk-using class had a positive effect on the learning attitude and satisfaction. Third, the learning attitude positively affected the learning effect perception. Fourth, satisfaction with the TED Talk class had a positive effect on the learning effect perception. In conclusion, English classes using TED talk can increase the interest and satisfaction of learners, and induce active class participation, which lead to a positive perception in learners' learning effects. Therefore, this study implies that TED talks are valuable and significant enough as materials in college English classes.

Non-Destructive Prediction of Head Rice Ratios using NIR Spectra of Hulled Rice (정조 상태에서 백미에 대한 완전미율의 비파괴 예측)

  • Kwon, Young-Rip;Cho, Seung-Hyun;Lee, Jae-Heung;Seo, Kyoung-Won;Choi, Dong-Chil
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.3
    • /
    • pp.244-250
    • /
    • 2008
  • The purpose of this study was to measure fundamental data required for the prediction of milling ratios, and to develop regression models to predict the head rice ratio of milled rice using NIR spectra of hulled rice. A total of 81 rice samples used in this study were collected from Jeongeup, Jeonbuk province in 2006. NIR spectra were measured using one mode of measurement, reflection. The reflectance spectra were measured in the wavelength region of 400-2500 nm with an NIR spectrophotometer "NIRSystems 6500" (Foss, Silverspring, USA). Calibration equations were developed by the modified partial least squares (MPLS), partial least squares (PLS), and principal components regression (PCR). Math treatments were 1-4-4-1, 1-10-10-1, 2-4-4-1, and 2-10-10-1. The software used was WinISI (Infrasoft International, State College, USA). Automatic head rice production and quality checking system used was "SY2000-AHRPQCS" (Ssangyong, Korea). The calibration was made with the first derivative and the spectrum designated was in 8 nm interval. The determination coefficients of head rice ratios were 0.8353, 0.8416 and 0.5277 for the MPLS, PLS and PCR, respectively. Those obtained with 20 nm interval were 0.8144, 0.8354 and 0.6908 for the MPLS, PLS and PCR, respectively. The calibration was made with second derivative that spectrum designated was 8 nm in interval. The determination coefficients of head rice ratios were 0.7994, 0.8017 and 0.4473 for the MPLS, PLS and PCR, respectively. Those with 20 nm interval were 0.8004, 0.8493 and 0.6609 for the MPLS, PLS and PCR, respectively. These results indicate that the accuracy of determination coefficient for MPLS and PLS is higher than that of PCR.

Analysis of Public System's Quality and User Behavior Using PLS-MGA Methodology : An Institutional Perspective (PLS-MGA 방법론을 활용한 제도론적 관점에서의 공공제도 품질과 사용자 행태의 분석)

  • Lee, Jae Yul;Hwang, Seung-June
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.78-91
    • /
    • 2017
  • In this study, we conducted a comparative study on user's perception and behavior on public system service (PSS) using institutionalism theory and MGA (multi-group analysis) methodology. In particular, this study focuses on how institutional isomorphism is applied to public system services and how MGA can be implemented correctly in a variance based SEM (structural equation model) such as PLS (partial least square). A data set of 496 effective responses was collected from pubic system users and an empirical research was conducted using three segmented models categorized by public proximity theory (public firms = 113, government contractors = 210, private contractors = 173). For rigorous group comparisons, each model was estimated by the same indicators and approaches. PLS-SEM was used in testing research hypotheses, followed by parametric and non-parametric PLS-MGA procedures in testing categorical moderation effects. This study applied novel procedures for testing composite measurement invariance prior to multi-group comparisons. The following main results and implications are drawn : 1) Partial measurement invariance was established. Multi-group analysis can be done by decomposed models although data can not be pooled for one integrated model. 2) Multi-group analysis using various approaches showed that proximity to public sphere moderated some hypothesized paths from quality dimensions to user satisfaction, which means that categorical moderating effects were partially supported. 3) Careful attention should be given to the selection of statistical test methods and the interpretation of the results of multi-group analysis, taking into account the different outcomes of the PLS-MGA test methods and the low statistical power of the moderating effect. It is necessary to use various methods such as comparing the difference in the path coefficient significance and the significance of the path coefficient difference between the groups. 4) Substantial differences in the perceptions and behaviors of PSS users existed according to proximity to public sphere, including the significance of path coefficients, mediation and categorical moderation effects. 5) The paper also provides detailed analysis and implication from a new institutional perspective. This study using a novel and appropriate methodology for performing group comparisons would be useful for researchers interested in comparative studies employing institutionalism theory and PLS-SEM multi-group analysis technique.

Identification of Foreign Objects in Soybeans Using Near-infrared Spectroscopy (근적외선 분광법을 이용한 콩과 이물질의 판별)

  • Lim, Jong-Guk;Kang, Sukwon;Lee, Kangjin;Mo, Changyeon;Son, Jaeyong
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.136-142
    • /
    • 2011
  • The objective of this research was to classify intact soybeans and foreign objects using near-infrared (NIR) spectroscopy. Intact soybeans and foreign objects were scanned using a NIR spectrometer equipped with scanning monochromator. NIR spectra of intact soybeans and foreign objects in the wavelength range from 900 to 1800 nm were collected. The classification of intact soybeans and foreign objects were conducted by using partial least-square discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA) multivariate methods. Various types of data pretreatments were tested to develop the classification models. Intact soybeans and foreign objects were successfully classified by the PLS-DA prediction model with mean normalization pretreatment. These results showed the potential of NIR spectroscopy combined with multivariate analysis as a method for classifying intact soybeans and foreign objects.

Modeling of a PEM Fuel Cell Stack using Partial Least Squares and Artificial Neural Networks (부분최소자승법과 인공신경망을 이용한 고분자전해질 연료전지 스택의 모델링)

  • Han, In-Su;Shin, Hyun Khil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.236-242
    • /
    • 2015
  • We present two data-driven modeling methods, partial least square (PLS) and artificial neural network (ANN), to predict the major operating and performance variables of a polymer electrolyte membrane (PEM) fuel cell stack. PLS and ANN models were constructed using the experimental data obtained from the testing of a 30 kW-class PEM fuel cell stack, and then were compared with each other in terms of their prediction and computational performances. To reduce the complexity of the models, we combined a variables importance on PLS projection (VIP) as a variable selection method into the modeling procedure in which the predictor variables are selected from a set of input operation variables. The modeling results showed that the ANN models outperformed the PLS models in predicting the average cell voltage and cathode outlet temperature of the fuel cell stack. However, the PLS models also offered satisfactory prediction performances although they can only capture linear correlations between the predictor and output variables. Depending on the degree of modeling accuracy and speed, both ANN and PLS models can be employed for performance predictions, offline and online optimizations, controls, and fault diagnoses in the field of PEM fuel cell designs and operations.

Automatic Selection of Optimal Parameter for Baseline Correction using Asymmetrically Reweighted Penalized Least Squares (Asymmetrically Reweighted Penalized Least Squares을 이용한 기준선 보정에서 최적 매개변수 자동 선택 방법)

  • Park, Aaron;Baek, Sung-June;Park, Jun-Qyu;Seo, Yu-Gyung;Won, Yonggwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.124-131
    • /
    • 2016
  • Baseline correction is very important due to influence on performance of spectral analysis in application of spectroscopy. Baseline is often estimated by parameter selection using visual inspection on analyte spectrum. It is a highly subjective procedure and can be tedious work especially with a large number of data. For these reasons, it is an objective and automatic procedure is necessary to select optimal parameter value for baseline correction. Asymmetrically reweighted penalized least squares (arPLS) based on penalized least squares was proposed for baseline correction in our previous study. The method uses a new weighting scheme based on the generalized logistic function. In this study, we present an automatic selection of optimal parameter for baseline correction using arPLS. The method computes fitness and smoothness values of fitted baseline within available range of parameters and then selects optimal parameter when the sum of normalized fitness and smoothness gets minimum. According to the experimental results using simulated data with varying baselines, sloping, curved and doubly curved baseline, and real Raman spectra, we confirmed that the proposed method can be effectively applied to optimal parameter selection for baseline correction using arPLS.

Discrimination model for cultivation origin of paper mulberry bast fiber and Hanji based on NIR and MIR spectral data combined with PLS-DA (닥나무 인피섬유와 한지의 원산지 판별모델 개발을 위한 NIR 및 MIR 스펙트럼 데이터의 PLS-DA 적용)

  • Jang, Kyung-Ju;Jung, So-Yoon;Go, In-Hee;Jeong, Seon-Hwa
    • Analytical Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.7-16
    • /
    • 2019
  • The objective of this study was the development of a discrimination model for the cultivational origin of paper mulberry bast fiber and Hanji using near infrared (NIR) and mid infrared (MIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA). Paper mulberry bast fiber was purchased in 10 different regions of Korea, and used to make Hanji. PLS-DA was performed using pre-treated FT-NIR and FT-MIR spectral data for paper mulberry bast fiber and Hanji. PLS-DA of paper mulberry bast fiber and Hanji samples, using FT-NIR spectral data, showed 100 % performance in cross validation and the confusion matrix (accuracy, sensitivity, and specificity). The discrimination models showed four regional groups which demonstrated clearer separation and much superior score plots in the NIR spectral data-based model than in the MIR spectral data-based model. Furthermore, the discrimination model based on the NIR spectral data of paper mulberry bast fiber had highly similar score morphology to that of the discrimination model based on the NIR spectral data of Hanji.

A Comparison of Estimation Approaches of Structural Equation Model with Higher-Order Factors Using Partial Least Squares (PLS를 활용한 고차요인구조 추정방법의 비교)

  • Son, Ki-Hyuk;Chun, Young-Ho;Ok, Chang-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.64-70
    • /
    • 2013
  • Estimation approaches for casual relation model with high-order factors have strict restrictions or limits. In the case of ML (Maximum Likelihood), a strong assumption which data must show a normal distribution is required and factors of exponentiation is impossible due to the uncertainty of factors. To overcome this limitation many PLS (Partial Least Squares) approaches are introduced to estimate the structural equation model including high-order factors. However, it is possible to yield biased estimates if there are some differences in the number of measurement variables connected to each latent variable. In addition, any approach does not exist to deal with general cases not having any measurement variable of high-order factors. This study compare several approaches including the repeated measures approach which are used to estimate the casual relation model including high-order factors by using PLS (Partial Least Squares), and suggest the best estimation approach. In other words, the study proposes the best approach through the research on the existing studies related to the casual relation model including high-order factors by using PLS and approach comparison using a virtual model.

Simultaneous Kinetic Spectrophotometric Determination of Sulfite and Sulfide Using Partial Least Squares (PLS) Regression

  • Afkhami, Abbas;Sarlak, Nahid;Zarei, Ali Reza;Madrakian, Tayyebeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.863-868
    • /
    • 2006
  • The partial least squares (PLS-1) calibration model based on spectrophotometric measurement, for the simultaneous determination of sulfite and sulfide is described. This method is based on the difference between the rate of the reaction of sulfide and sulfite with Malachite Green in pH 7.0 buffer solution and at 25 ${^{\circ}C}$. The absorption kinetic profiles of the solutions were monitored by measuring the decrease in the absorbance of Malachite Green at 617 nm in the time range 10-180 s after initiation of the reactions with 2 s intervals. The experimental calibration matrix for partial least squares (PLS-1) calibration was designed with 24 samples. The cross-validation method was used for selecting the number of factors. The results showed that simultaneous determination could be performed in the range 0.030-1.5 and 0.030-1.2 $\mu$g m$L ^{-1}$ for sulfite and sulfide, respectively. The proposed method was successfully applied to simultaneous determination of sulfite and sulfide in water samples and whole human blood.