References
- Veziroglu, A. and Macario, R., "Fuel Cell Vehicles: State of the Art with Economic and Environmental Concerns," Int. J. Hydrog. Energy, 36, 25-43(2011). https://doi.org/10.1016/j.ijhydene.2010.08.145
- Wang, C. Y., "Fundamental Models for Fuel Cell Engineering," Chem. Rev., 104, 4727-4766(2004). https://doi.org/10.1021/cr020718s
- Ding, Y., Bi, X. T. and Wilkinson, D. P., "Numerical Investigation of the Impact of Two-Phase Flow Maldistribution on PEM Fuel Cell Performance," Int. J. Hydrog. Energy, 39, 469-480(2014). https://doi.org/10.1016/j.ijhydene.2013.10.047
- Han, I.-S., Lim, J., Jeong, J. and Shin, H. K., "Effect of Serpentine Flow-Field Designs on Performance of PEMFC Stacks for Micro-CHP Systems," Renew. Energy, 54, 180-188(2013). https://doi.org/10.1016/j.renene.2012.08.027
- Chung, H., Ha, T., Kim, H. and Han, C., "Simulation of PEM Fuel Cell with 2D Steady-State Model," Korean Chem. Eng. Res., 46, 915-921(2008).
- Jeong, J., Han, I.-S. and Shin, H. K., "Optimal Sizing of the Manifolds in a PEM Fuel Cell Stack using Three-Dimensional CFD Simulations," Trans. Korean Hydrogen & New Energy Soc., 24, 386-392 (2013). https://doi.org/10.7316/KHNES.2013.24.5.386
- Guo, N., Leu, M. C. and Koylu, U. O., "Network based Optimization Model for Pin-Type Flow Field of Polymer Electrolyte Membrane Fuel Cell," Int. J. Hydrog. Energy, 38, 6750-6761(2013). https://doi.org/10.1016/j.ijhydene.2013.03.066
- Hou, Y., Yang, Z. and Wan, G., "An Improved Dynamic Voltage Model of PEM Fuel Cell Stack," Int. J. Hydrog. Energy, 35, 11154-11160 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.036
- Zhao, Y. and Pistikopoulos, E., "Dynamic Modeling and Parametric Control for the Polymer Electrolyte Membrane Fuel Cell System," J. Power Sources, 232, 270-278(2013). https://doi.org/10.1016/j.jpowsour.2012.12.116
- Khadom, A. A., "Modeling of Corrosion Reaction Data in Inhibited Acid Environment using Regressions and Artificial Neural Networks," Korean J. Chem. Eng., 30, 2197-2204(2013). https://doi.org/10.1007/s11814-013-0170-0
- Saengrung, A., Abtahi, A. and Zilouchian, A., "Neural Network Model for a Commercial PEM Fuel Cell System," J. Power Sources, 172, 749-759(2007). https://doi.org/10.1016/j.jpowsour.2007.05.039
- Li, X., Cao, G. and Zhu, X., "Modeling and Control of PEMFC Based on Least Squares Support Vector Machines," Energy Conv. Manag., 47, 1032-1050(2006). https://doi.org/10.1016/j.enconman.2005.04.002
- Zhong, Z., Zhu, X. and Cao, G., "Modeling a PEMFC by a Support Vector Machine," J. Power Sources, 160, 293-298(2006). https://doi.org/10.1016/j.jpowsour.2006.01.040
- Petrone, R., Zheng, Z., Hissel, D., Pera, M. C., Pianese, C., Sorrentino, M., Becherif, M. and Yousfi-Steiner, N., "A Review on Modelbased Diagnosis Methodologies for PEMFCs," Int. J. Hydrog. Energy, 38, 7077-7091(2013). https://doi.org/10.1016/j.ijhydene.2013.03.106
- Napoli, G., Ferraro, M., Sergi, F., Brunaccini, G. and Antonucci, V., "Data Driven Models for a PEM Fuel Cell Stack Performance Prediction," Int. J. Hydrog. Energy, 38, 11628-11638(2013). https://doi.org/10.1016/j.ijhydene.2013.04.135
- Hua, J., Li, J., Ouyang, M., Lu, L. and Xu, L., "Proton Exchange Membrane Fuel Cell System Diagnosis based on the Multivariate Statistical Method," Int. J. Hydrog. Energy, 36, 9896-9905(2011). https://doi.org/10.1016/j.ijhydene.2011.05.075
- Wold, S., Sjostrom, M. and Eriksson, L., "PLS-Regression: a Basic Tool of Chemometrics," Chemometrics Intell. Lab. Syst., 58, 109-130(2001). https://doi.org/10.1016/S0169-7439(01)00155-1
- Han, I.-S., Kim, M., Lee, C.-H., Cha, W., Ham, B.-K., Jeong, J.-H., Lee, H., Chung, C.-B. and Han, C., "Application of Partial Least Squares Methods to a Terephthalic Acid Manufacturing Process for Product Quality Control," Korean J. Chem. Eng., 20, 977-984(2003). https://doi.org/10.1007/BF02706925
- Han, I.-S., Han, C. and Chung, C.-B., "Melt Index Modeling with Support Vector Machines, Partial Least Squares, and Artificial Neural Networks," J. Appl. Polym. Sci., 95, 967-974(2004).
- Han, I.-S. and Han, C., "Modeling of Multistage Air-Compression Systems in Chemical Processes," Ind. Eng, Chem. Res., 42, 2209-2218(2003). https://doi.org/10.1021/ie020270l
- Min, K. G., Han, I.-S. and Han, C., "Iterative Error-based Nonlinear PLS Method for Nonlinear Chemical Process Modeling," J. Chem. Eng. Japan, 35, 613-625(2002). https://doi.org/10.1252/jcej.35.613
- Geladi, P. and Kowalski, B., "Partial Least-Squares Regression: a Tutorial," Anal. Chim. Acta, 185, 1-17(1986). https://doi.org/10.1016/0003-2670(86)80028-9
- Kalogirou, S. A., "Artificial Neural Networks in Renewable Energy Systems Applications: a Review," Renew. Sust. Energ. Rev., 5, 373-401(2001). https://doi.org/10.1016/S1364-0321(01)00006-5
- Hagan, M. T., Demuth, H. B. and Beale, M., Neural Network Design, PWS Publishing, Boston, MA(1996).
- Hornik, K., Stinchcombe, M. and White, H., "Multilayer Feedforward Networks are Universal Approximatiors," Neural Networks, 2, 359-366(1989). https://doi.org/10.1016/0893-6080(89)90020-8
- Han, I.-S., Jeong, J., Kho, B. K., Choi, C. H., Yu, S. and Shin, H. K., "Development of a 25 kW-Class PEM Fuel Cell System for the Propulsion of a Leisure Boat," Trans. Korean Hydrogen & New Energy Soc., 25, 271-279(2014). https://doi.org/10.7316/KHNES.2014.25.3.271
- Han, I.-S., Jeong, J. and Shin, H. K., "PEM Fuel-Cell Stack Design for Improved Fuel Utilization," Int. J. Hydrog. Energy, 38, 11996-12006(2013). https://doi.org/10.1016/j.ijhydene.2013.06.136
- Andersen, C. M. and Bro, R., "Variable Selection in Regression - Tutorial," J. Chemometr., 24, 728-737(2010). https://doi.org/10.1002/cem.1360
- Chong, I.-G. and Jun, C.-H., "Performance of Some Variable Selection Methods When Multicollinearity is Present," Chemometrics Intell. Lab. Syst., 78, 103-112(2005). https://doi.org/10.1016/j.chemolab.2004.12.011
Cited by
- Effect of gas diffusion layer compression on the polarization curves of a polymer electrolyte membrane fuel cell: Analysis using a polarization curve-fitting model vol.33, pp.11, 2016, https://doi.org/10.1007/s11814-016-0157-8
- Pattern Recognition for Typification of Whiskies and Brandies in the Volatile Components using Gas Chromatographic Data vol.21, pp.5, 2016, https://doi.org/10.9708/jksci.2016.21.5.167
- PCBs 독성 예측을 위한 주요 분자표현자 선택 기법 및 계산독성학 기반 QSAR 모델 개발 vol.54, pp.5, 2015, https://doi.org/10.9713/kcer.2016.54.5.621
- Fuel cell-based CHP system modelling using Artificial Neural Networks aimed at developing techno-economic efficiency maximization control systems vol.123, pp.None, 2015, https://doi.org/10.1016/j.energy.2017.02.043