Field experiment for two years was conducted at Ulleung island to determine the optimum planting date and density of Cnidium officinale Makino. Early planting(Mar. 20) showed the highest yield by 2,880kg per ha as dry wt. Planting time after Mar. 20 was decreased. Late planting had higher occurrence of diseases and insect damage. Early planting had higher extract contents than late planting without violation of the Korean crude drug regulation such as ash contents. Although plants grew better in lower density, they had fewer growing points per plant which actually determine the yield components. Planting density did not affected extract contents in Cnidium officinale Makino. High density planting($35\times15cm$)yielded 33% than those of lower planting density($45\times25cm$).
This experiment was carried out to investigate the optimum planting density in low fertilizing cultivation of machine transplanting in rice field of Honam Agricultural Research Institute, NICS for $2004{\sim}2005$. Sobibyeo which belongs to medium maturing variety and Nampyeongbyeo which belongs to medium-late maturing variety were transplanted on May 30. In this experiment, there was no significant difference in heading date between planting density and nitrogen fertilization rate, and heading dates were August 8 in Sobibyeo, and August 14 in Nampyeongbyeo respectively. In relation to lodging character, lodging Index was high where the nitrogen fertilization rate and planting density were high. As planting density increases, panicle number per $m^{2}$ increased irrespective of nitrogen fertilization rate. When nitrogen was 6 kg/10a, rice yield of Sobibyeo was more where planting density was 90 hill per $3.3m^{2}$, and that of Nampyeongbyeo was more where planting density was 80 hill per $3.3m^{2}$. When nitrogen was 9 kg/10a, rice yield of Sobibyeo was more where planting density was 100 hill per $3.3m^{2}$, and that of Nampyeongbyeo was more where planting density was 110 hill per $3.3m^{2}$. Head rice rate of brown rice was higher when planting density increased, and was higher at 6 kg/10a nitrogen rate than 9 kg/10a nitrogen rate in all varieties.
This study was conducted to compare the growth and yield, and to determine the optimum planting date and density in two improved black soybean varieties. The two varieties were planted by driller attached a tractor on May 21 and June 19, 1993, and treated five planting densities, respectively. Yield of Gumjeongkong 1 was similer for both planting dates, but that of Suwon 157 was remarkably reduced on June 19 planting compared to May 21. There was significant differences between planting dates in stem length, number of branches, seeds per plant, seed weight and yield. Planting density, also, significantly affected on stem length, number of branches and seeds per plant. Statistically significant interactions between planting date$\times$variety and planting date$\times$planting density were found at almost all characteristics, except between variety$\times$planting density. Optimum planting date and density of Gumjeongkong 1 for high yield were June 19 and 33, 000 plants per l0a, and those of Suwon 157 were May 21 and 22, 000 plants per l0a, respectively. The coefficient of variation at different planting densities was high at stem length, number of branches, seeds per plant and yield, but low at number of main stem node, seeds per pod and 100 seed weight.
In order to know the optimum planting density under shading structures at different light intensity, We investigated the growth status, distribution of ginseng leaf area, correlation between planting density and root weight per plant and yield, correlation between leaf area index and root weight per plant and yield. According to the increase of planting density the leaf area per plant was decreased, but leaf area index (L.A.I) was increased. Ginseng leaf population at different lines under common straw shading were distributed mainly in frost lines but polyethylene net shading at 10fo light intensity were distributed equally in all lines. Optimum planting density in common straw shading at 5% light intensity was 55 plant per tan (90 cmX180 cm) and polyethylene net shading 81 10% light intensity was 60 plant per tan, in consideration of root weight and yield. Optimum leaf area index was 2.4 under common straw shading at 5% light intensity but was 2.7 under polyethylene net shading at 10% light intensity.
As a solution to the rural shortage of labor, mechanization crop production is necessary, but in some cases, the mechanization can cause problems such as a decrease in products due to the expansion of the necessary moderate workspace. The purpose of this study was to compare the yields of pepper by the planting-density for the mechanization of pepper cultivation. Experiments were done with three planting-density levels of $900{\times}300mm^2$(A-T), $1200{\times}450mm^2$(B-T), and $1500{\times}600mm^2$(C-T). In the analysis of growth, the highest values in plant height and thickness and the number of branches were observed with the B-T. C-T showed the highest values in the number of green-pepper and red-pepper and weight of the green-pepper and red-pepper, followed by B-T and A-T. In the analysis of growth, it was concluded that the proportion of the pepper body to the total length increased as the planting-density decreased. C-T had the biggest maximum diameter of the body, followed by B-T and A-T. On the other hand, A-T had the biggest minimum diameter of the body, followed by B-T and C-T. It was judged that the larger the planting-density was, the shorter the length was and the thicker the form was. As a result of measuring the chromaticity, there was no significant statistical difference in quality. Based on the experiment results, the ranking in total yields was in the order of C-T, B-T, and A-T. The reduced planting-density seemed to increase the productivity, while the labor intensity and time were reduced due to the improvement of the working environment.
Won-Kyung Kim;Sang Hee Lee;Deok Gyu Choi;Seok Ho Park;Youn Koo Kang;Seok Pyo Moon;Chang Uk Cheon;Sung Hyuk Jang
Journal of Drive and Control
/
v.21
no.2
/
pp.30-35
/
2024
Domestic rice is more expensive than imported products, so it is necessary to reduce production costs to secure competitiveness. Low-density planting developed in Japan is a cultivation technology that reduces labor and production costs without yield loss. The area of low-density cultivation is continuously increasing. However, research on how rice transplanters adapt to low-density planting has not been conducted. Therefore, this study was carried out to determine the optimal working conditions of a rice transplanter for low-density planting. Three types of rice transplanters were used and treated based on 3 conveying distance levels. The number of picked seedlings, pick missing rate, the number of planted seedlings, and the mis-planted rate were investigated to evaluate planting accuracy according to the transfer distance to the seedling tray. The results showed that the number of planted seedlings was 4.31~4.95 EA with an L1 seedling tray transfer distance (horizontal 9 mm, vertical 8 mm), but the mis-planted rate was higher than in other conditions. At L2 (horizontal 9 mm, vertical 10 mm) and L3 (horizontal 11 mm, vertical 8 mm) transfer distance conditions, the number of planted seedlings were 4.89-5.68 EA and 4.69-5.66 EA, respectively, with a low mis-planted rate of less than 3%. The results showed that if the transfer distance is adjusted properly, a rice transplanter can be used for low-density planting with high planting accuracy.
Double cropping is important for increase of farm income and rate of arable land utilization. This study was carried out to obtain information for optimum plant density of the second crop in a double cropping system. A waxy corn hybrid, Chalok #2, was sown on July 10 at the first corn cropping site. Growth characteristics and yield response of fresh waxy corn were examined under different planting densities, which were 55.5, 66.6, 83.3, and 111.1 thousands plants ${ha}^{-1}$. Plant height was higher under high planting density than low planting density and 154cm at the 55.5 thousand plants ${ha}^{-1}$, and 168cm at the 111.1 thousand plant ${ha}^{-1}$. It showed same trends in ear height and gravity center height. But planting density did not affect root lodging and silking date. At the silking stage, stalk and leaf dry matter weight and leaf area index (LAI) were increased significantly with increasing planting density, Filled ear lengtg was shortened significantly under the hi임est planting density (111.1 thousand plants ${ha}^{-1}$), while ear length and ear diameter were no differences among planting densities. The number of marketable ears increased with increasing planting density, but husked fresh ear weight was the highest at 83.3 thousand plants ${ha}^{-1}$ with 11.2MT ${ha}^{-1}$and optimum planting density was estimated as about 80 thousand plants ${ha}^{-1}$.
The objective of experiment was to investigate the effects of planting density on growth and yield of vegetable soybean, and to clarify the optimum planting density of vegetable soybean in the middle west region of Korea. The field experiment with 4 levels of planting density was carried out at Yesan area in $2005{\sim}2006$. The days from seeding to flowering and the days from seeding to harvesting and lodging were not significantly different among planting distance. The stem length was increased as planting distance was shortened but the number of node, branch, pod per branch, pod per individual, weight of stem and pod, one hundred pod weight and rate of 2+3 seed per pod were decreased as planting density was increased. The size of vegetable soybeans was not significantly different among planting distance, but the harvest index of vegetable soybean was decreased as planting distance was shortened. Yield of vegetable soybean was increased as planting distance was decreased. However, the approriate densities for stem and pod weight per a plant, number of pod per a branch and the vegetable soybean yield of 2+3 seed per pod were different from that density. The optimal planting distance of varieties was $60{\sim}25\;cm$ in Sunheukkong and Ilpumgeomjeongkong and was $60{\sim}35\;cm$ in Galmikong.
This study was conducted to examine biomass production and its allocation characteristics by the planting density for 12- year - old Pinus densiflora forma erecta Uyeki plantation located in Chilbo Experimental Forest of Seoul National University in Suwon, Kyonggj-do. Different sample trees were selected for harvest by the planting density as follows; six trees from 1.0m X 1.0m, five trees from 1.8m X 1.8m, four trees from 3.0m X 3.0m. Stem, previous year branches, current year branches, previous year needles and current year needles were weighed respectively with the stratified clipping method, and biomass production and its allocation characteristics were analyzed : (1) Total biomass of the above-ground was the highest at the planting density of 1.8m X l.8m and followed by 1.0m X l.0m. (2) The higher the planting density was, the lower the ratio of biomass in branches and needles. (3) As the planting density decreased, the moisture contents of stem and current year branches increased but those of needles and previous year branches decreased. (4) Maximum photosynthetic layer appeared in the upper portion of the tree at higher density plantation.
Major characteristics of new Waesungri maize inbred line has multi-tiller and ears: five to six tillers and seven to eight ears per plant and flowering date of Waesungri was delayed about 18 and 24 days compared to Mo17 U.S line and IK$_4$ Korean local lines, respectively. Number of ears, fresh and dry weight per plant were significantly different among all tested hybrids including Waesungri/Sinkihong hybrid under different planting times and densities. Especially, both fresh and dry weight of IK$_1$/FR140//Waesungri F$_1$hybrid were significantly higher at high planting density. In kernel weight per unit area, Wnesungri/Sinkihong hybrid was high at high density and IK$_1$/FR140//Waesungri hybrid was high at low planting density. As results of analysis of variance, flowering date was shown a significantly different both planting times and varieties, while other characters including stem height were shown very variable in interactions with enviromental factors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.