• Title/Summary/Keyword: PLA/PBAT Blends

Search Result 4, Processing Time 0.019 seconds

Effects of PEO Additions on the Mechanical and Thermal Proprieties of PLA/PBAT Blends (폴리에틸렌옥사이드가 PLA/PBAT 블렌드 물성에 미치는 영향)

  • Jang, Hyunho;Kwon, Sangwoo;Eom, Yoojun;Yoo, Seungwoo;Park, Su-il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.2
    • /
    • pp.93-98
    • /
    • 2020
  • The blends of Poly(lactic acid) (PLA) and Poly(butylene adipate-co-terephthalate) (PBAT) have been recognized as a replacement for commodity plastic films and bags in biodegradable packaging industries. The purpose of this study is to identify changes in the thermal and mechanical properties of PLA/PBAT blends with the addition of poly(ethylene oxide)(PEO). PLA (80%) and PBAT (20%) were melt mixed with 0 to 10 phr of PEO and processed using a hot press. The addition of PEO into PLA/PBAT increased the elongation at break and improved thermal stability. With PEO addition, two melting temperature (Tm) peaks of PLA/PBAT merged into one peak showing improved miscibility. The result of this study showed that the addition of PEO increased the ductility and thermal stability of PLA/PBAT blends.

Modification of PLA/PBAT Blends and Thermal/Mechanical Properties (PLA/PBAT 블렌드의 개질과 열적, 기계적 특성)

  • Kim, Dae-Jin;Min, Chul-Hee;Park, Hae-Youn;Kim, Sang-Gu;Seo, Kwan-Ho
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.104-111
    • /
    • 2013
  • Poymer blends of two degradable aliphatic polyesters, relatively expensive material polylactic acid (PLA) and relatively inexpensive material poly(butylene adipate-co-terephthalate) (PBAT), were used in this study. Three different kinds of modifiers were used with various amounts. Diisocyanate type methylenediphenyl 4,4'-diisocyanate (MDI) and hexamethylene diisocyanate (HDI) were used as modifiers and epoxy type coupling agents also used. The melt flow index (MFI) and dynamic viscoelasticity of various compositions of PLA/PBAT blends were studied. The mechanical property and morphology with respect to the fracture surface of PLA/PBAT blends were also investigated using tensile test and field emission scanning electronic microscopy, respectively. These tests were also used to verify the compatibility of PLA/PBAT and the effect of mechanical properties due to the use of modifiers. Tensile properties of PLA/PBAT blends modified with HDI were improved remarkably.

Morphology, Thermal and Mechanical Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/CMPS Blends (Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/CMPS 블렌드의 형태학, 열적 및 기계적 특성)

  • Kang, Kyoung-Soo;Kim, Bong-Shik;Jang, Woo-Yeul;Shin, Boo-Young
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.164-168
    • /
    • 2009
  • The effects of chemically modified thermoplastic starch (CMPS) on the morphology, thermal and mechanical properties of the blends of poly (lactic acid)(PLA) and poly(butylene adipate-co-terephthalate)(PBAT) were studied. Blends of PLA/PBAT with the CMPS contents of 10, 20 and 30 wt% on the basis of PLA/PBAT weight were prepared by a twin screw extruder. The morphology, thermal and mechanical properties of the blends were examined by using scanning electron microscope (SEM), differential scanning calorimeter (DSC) and a tensile tester. The DSC study revealed that PLA/PBAT blends are thermodynamically immiscible, while the compatibility was much improved by addition of the CMPS.

Effect of Ultrasound on the Properties of Biodegradable Polymer Blends of Poly(lactic acid) with Poly(butylene adipate-co-terephthalate)

  • Lee, Sang-Mook;Lee, Young-Joo;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.44-50
    • /
    • 2007
  • This study investigated the effect of ultrasound irradiation on the blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT). The blends of PLA/PBAT(50/50) (PBAT50) were prepared in a melt mixer with an ultrasonic device attached. Thermal, rheological, and mechanical properties, morphology, and biodegradability of the sonicated blends were analysed. The viscosity of the sonicated blends was increased by the ultrasound irradiation owing to the strong interaction. The morphology of the sonicated blends was significantly dependent on the duration o the ultrasound irradiation. For PBAT50, the phase size reduction was maximized when the blends were ultrasonically irradiated for 30 sec. At longer duration of ultrasound irradiation, the PBAT phase underwent flocculation. Measurement of the tensile properties showed an increased breakage tensile stress and an enhanced Young's modulus when the blends were properly irradiated. This improvement was ascribed to better adhesion between the PLA matrix and the PBAT domain and to better dispersion of the PBAT phase. However, the tensile properties were maximized after excessive energy irradiation, which was ascribed to an emulsifying effect leading to coalescence of the PBAT phase. Impact strength was increased to reach a peak with the ultrasound irradiation, and was higher than the untreated sample for all sonicated samples due to the difference of failure mechanism between the tensile test and the impact test.