References
- Geyer, R., Jambeck, J.R., and Law, K.L. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3 (7): 25-29.
- Rillig, M.C. 2012. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol. 46 (12): 6453-6454. https://doi.org/10.1021/es302011r
- Rasal, R.M., and Hirt, D.E. 2009. Micropatterning of covalently attached biotin on poly(lactic acid) film surfaces. Macromol. Biosci. 9 (10): 989-996. https://doi.org/10.1002/mabi.200800374
- Leja, K., Lewandowicz, G., Hsu, S.H., Hung, K.C., Chen, C.W., Muller, R., Elvers, D., Song, C.H., Steinbuchel, A., Leker, J., et al. 2020. Bioplastics market data update. Polymers (Basel). 9 (1): 1-14. https://doi.org/10.3390/polym9010001
- Li, R., Wu, L., and Li, B.G. 2018. Poly (L-lactide)/PEG-mb-PBAT blends with highly improved toughness and balanced performance. Eur. Polym. J. 100 (January): 178-186. https://doi.org/10.1016/j.eurpolymj.2018.01.037
- Tien, N.D., and Sakurai, S. 2017. Hierarchical structures in poly(lactic acid)/poly(ethylene glycol) blends. Eur. Polym. J. 89 (February): 381-398. https://doi.org/10.1016/j.eurpolymj.2017.02.012
- Auras, R., Harte, B., and Selke, S. 2004. An overview of polylactides as packaging materials. Macromol. Biosci. 4 (9): 835-864. https://doi.org/10.1002/mabi.200400043
- Mohapatra, A.K., Mohanty, S., and Nayak, S.K. 2014. Study of Thermo-Mechanical and Morphological Behaviour of Biodegradable PLA/PBAT/Layered Silicate Blend Nanocomposites. J. Polym. Environ. 22 (3): 398-408. https://doi.org/10.1007/s10924-014-0639-x
- Odent, J., Raquez, J.M., Duquesne, E., and Dubois, P. 2012. Random aliphatic copolyesters as new biodegradable impact modifiers for polylactide materials. Eur. Polym. J. 48 (2): 331-340. https://doi.org/10.1016/j.eurpolymj.2011.11.002
- Murariu, M., Da Silva Ferreira, A., Alexandre, M., and Dubois, P. 2008. Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polym. Adv. Technol. 19 (6): 636-646. https://doi.org/10.1002/pat.1131
- Hoidy, W.H., Al-Mulla, E.A.J., and Al-Janabi, K.W. 2010. Mechanical and Thermal Properties of PLLA/PCL Modified Clay Nanocomposites. J. Polym. Environ. 18 (4): 608-616. https://doi.org/10.1007/s10924-010-0240-x
- Ding, Y., Feng, W., Huang, D., Lu, B., Wang, P., Wang, G., and Ji, J. 2019. Compatibilization of immiscible PLA-based biodegradable polymer blends using amphiphilic di-block copolymers. Eur. Polym. J. 118 (April): 45-52. https://doi.org/10.1016/j.eurpolymj.2019.05.036
- Ding, Y., Feng, W., Lu, B., Wang, P., Wang, G., and Ji, J. 2018. PLA-PEG-PLA tri-block copolymers: Effective compatibilizers for promotion of the interfacial structure and mechanical properties of PLA/PBAT blends. Polymer (Guildf). 146 179-187. https://doi.org/10.1016/j.polymer.2018.05.037
- Kilic, N.T., Can, B.N., Kodal, M., and Ozkoc, G. 2019. Compatibilization of PLA/PBAT blends by using Epoxy-POSS. J. Appl. Polym. Sci. 136 (12): 1-18.
- Al-Itry, R., Lamnawar, K., and Maazouz, A. 2012. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 97 (10): 1898-1914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028
- Li, F.J., Zhang, S.D., Liang, J.Z., and Wang, J.Z. 2015. Effect of polyethylene glycol on the crystallization and impact properties of polylactide-based blends. Polym. Adv. Technol. 26 (5): 465-475. https://doi.org/10.1002/pat.3475
- Wang, J., Zhai, W., and Zheng, W. 2012. Poly(Ethylene Glycol) Grafted Starch Introducing a Novel Interphase in Poly(Lactic Acid)/Poly(Ethylene Glycol)/Starch Ternary Composites. J. Polym. Environ. 20 (2): 528-539. https://doi.org/10.1007/s10924-012-0416-7
- Moustafa, H., Guizani, C., and Dufresne, A. 2017. Sustainable biodegradable coffee grounds filler and its effect on the hydrophobicity, mechanical and thermal properties of biodegradable PBAT composites. J. Appl. Polym. Sci. 134 (8): 1-11.
- Fang, H., Jiang, F., Wu, Q., Ding, Y., and Wang, Z. 2014. Supertough polylactide materials prepared through in situ reactive blending with PEG-based diacrylate monomer. ACS Appl. Mater. Interfaces 6 (16): 13552-13563. https://doi.org/10.1021/am502735q
- Gaikwad, A.N., Wood, E.R., Ngai, T., and Lodge, T.P. 2008. Two calorimetric glass transitions in miscible blends containing poly(ethylene oxide). Macromolecules 41 (7): 2502-2508. https://doi.org/10.1021/ma702429r
- Nijenhuis, A.J., Colstee, E., Grijpma, D.W., and Pennings, A.J. 1996. High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polymer (Guildf). 37 (26): 5849-5857. https://doi.org/10.1016/S0032-3861(96)00455-7
- Eom, Y., Choi, B., and Park, S. il 2019. A Study on Mechanical and Thermal Properties of PLA/PEO Blends. J. Polym. Environ. 27 (2): 256-262. https://doi.org/10.1007/s10924-018-1344-y
- Qiu, J., Xing, C., Cao, X., Wang, H., Wang, L., Zhao, L., and Li, Y. 2013. Miscibility and double glass transition temperature depression of poly(L-lactic acid) (PLLA)/poly (oxymethylene) (POM) blends. Macromolecules 46 (14): 5806-5814. https://doi.org/10.1021/ma401084y
- Heald, C.R., Stolnik, S., Kujawinski, K.S., De Matteis, C., Garnett, M.C., Illum, L., Davis, S.S., Purkiss, S.C., Barlow, R.J., and Gellert, P.R. 2002. Poly(lactic acid)-poly(ethylene oxide) (PLA-PEG) nanoparticles: NMR studies of the central solidlike PLA core and the liquid PEG corona. Langmuir 18(9): 3669-3675. https://doi.org/10.1021/la011393y