DOI QR코드

DOI QR Code

Effects of PEO Additions on the Mechanical and Thermal Proprieties of PLA/PBAT Blends

폴리에틸렌옥사이드가 PLA/PBAT 블렌드 물성에 미치는 영향

  • Received : 2020.08.14
  • Accepted : 2020.08.24
  • Published : 2020.08.31

Abstract

The blends of Poly(lactic acid) (PLA) and Poly(butylene adipate-co-terephthalate) (PBAT) have been recognized as a replacement for commodity plastic films and bags in biodegradable packaging industries. The purpose of this study is to identify changes in the thermal and mechanical properties of PLA/PBAT blends with the addition of poly(ethylene oxide)(PEO). PLA (80%) and PBAT (20%) were melt mixed with 0 to 10 phr of PEO and processed using a hot press. The addition of PEO into PLA/PBAT increased the elongation at break and improved thermal stability. With PEO addition, two melting temperature (Tm) peaks of PLA/PBAT merged into one peak showing improved miscibility. The result of this study showed that the addition of PEO increased the ductility and thermal stability of PLA/PBAT blends.

PEO 첨가에 따른 PLA/PBAT 블렌드 필름의 물성개선 효과를 확인하였다. PEO 농도에 따른 영향을 확인하기 위하여 기계적특성, 열적특성 및 화학적 특성을 조사하였다. PEO 농도가 증가함에 따라 PLA/PBAT/PEO 블렌드 필름의 인장강도는 소폭 감소하지만 열안정성은 증가하였다. PEO 2% 첨가군은 다른 샘플들에 비해 인장강도 감소폭 대비 높은 파단연신율(46.8%) 개선 효과를 보였다. 반면, PEO 4% 수준에서 PEO 무첨가와 유사한 파단연신율과 인장강도의 저하가 발생하였다. 열특성 분석을 통해 PLA/PBAT 블렌드 내 낮은 혼화성으로 발생한 두개의 Tm 피크가 PEO 첨가로 상용성이 증가하여 피크가 하나로 합쳐지는 것을 확인하였다. 또한, 1H-NMR 분석을 통해 블렌드 내의 PEO의 농도가 증가함을 확인하였다. 향후, PEO 농도가 증가함에 따라 감소된 인장강도 유지와 파단연신율을 확보하기 위한 PEO의 분산성 향상에 대한 추가적인 연구가 필요하다.

Keywords

References

  1. Geyer, R., Jambeck, J.R., and Law, K.L. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3 (7): 25-29.
  2. Rillig, M.C. 2012. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol. 46 (12): 6453-6454. https://doi.org/10.1021/es302011r
  3. Rasal, R.M., and Hirt, D.E. 2009. Micropatterning of covalently attached biotin on poly(lactic acid) film surfaces. Macromol. Biosci. 9 (10): 989-996. https://doi.org/10.1002/mabi.200800374
  4. Leja, K., Lewandowicz, G., Hsu, S.H., Hung, K.C., Chen, C.W., Muller, R., Elvers, D., Song, C.H., Steinbuchel, A., Leker, J., et al. 2020. Bioplastics market data update. Polymers (Basel). 9 (1): 1-14. https://doi.org/10.3390/polym9010001
  5. Li, R., Wu, L., and Li, B.G. 2018. Poly (L-lactide)/PEG-mb-PBAT blends with highly improved toughness and balanced performance. Eur. Polym. J. 100 (January): 178-186. https://doi.org/10.1016/j.eurpolymj.2018.01.037
  6. Tien, N.D., and Sakurai, S. 2017. Hierarchical structures in poly(lactic acid)/poly(ethylene glycol) blends. Eur. Polym. J. 89 (February): 381-398. https://doi.org/10.1016/j.eurpolymj.2017.02.012
  7. Auras, R., Harte, B., and Selke, S. 2004. An overview of polylactides as packaging materials. Macromol. Biosci. 4 (9): 835-864. https://doi.org/10.1002/mabi.200400043
  8. Mohapatra, A.K., Mohanty, S., and Nayak, S.K. 2014. Study of Thermo-Mechanical and Morphological Behaviour of Biodegradable PLA/PBAT/Layered Silicate Blend Nanocomposites. J. Polym. Environ. 22 (3): 398-408. https://doi.org/10.1007/s10924-014-0639-x
  9. Odent, J., Raquez, J.M., Duquesne, E., and Dubois, P. 2012. Random aliphatic copolyesters as new biodegradable impact modifiers for polylactide materials. Eur. Polym. J. 48 (2): 331-340. https://doi.org/10.1016/j.eurpolymj.2011.11.002
  10. Murariu, M., Da Silva Ferreira, A., Alexandre, M., and Dubois, P. 2008. Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polym. Adv. Technol. 19 (6): 636-646. https://doi.org/10.1002/pat.1131
  11. Hoidy, W.H., Al-Mulla, E.A.J., and Al-Janabi, K.W. 2010. Mechanical and Thermal Properties of PLLA/PCL Modified Clay Nanocomposites. J. Polym. Environ. 18 (4): 608-616. https://doi.org/10.1007/s10924-010-0240-x
  12. Ding, Y., Feng, W., Huang, D., Lu, B., Wang, P., Wang, G., and Ji, J. 2019. Compatibilization of immiscible PLA-based biodegradable polymer blends using amphiphilic di-block copolymers. Eur. Polym. J. 118 (April): 45-52. https://doi.org/10.1016/j.eurpolymj.2019.05.036
  13. Ding, Y., Feng, W., Lu, B., Wang, P., Wang, G., and Ji, J. 2018. PLA-PEG-PLA tri-block copolymers: Effective compatibilizers for promotion of the interfacial structure and mechanical properties of PLA/PBAT blends. Polymer (Guildf). 146 179-187. https://doi.org/10.1016/j.polymer.2018.05.037
  14. Kilic, N.T., Can, B.N., Kodal, M., and Ozkoc, G. 2019. Compatibilization of PLA/PBAT blends by using Epoxy-POSS. J. Appl. Polym. Sci. 136 (12): 1-18.
  15. Al-Itry, R., Lamnawar, K., and Maazouz, A. 2012. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 97 (10): 1898-1914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028
  16. Li, F.J., Zhang, S.D., Liang, J.Z., and Wang, J.Z. 2015. Effect of polyethylene glycol on the crystallization and impact properties of polylactide-based blends. Polym. Adv. Technol. 26 (5): 465-475. https://doi.org/10.1002/pat.3475
  17. Wang, J., Zhai, W., and Zheng, W. 2012. Poly(Ethylene Glycol) Grafted Starch Introducing a Novel Interphase in Poly(Lactic Acid)/Poly(Ethylene Glycol)/Starch Ternary Composites. J. Polym. Environ. 20 (2): 528-539. https://doi.org/10.1007/s10924-012-0416-7
  18. Moustafa, H., Guizani, C., and Dufresne, A. 2017. Sustainable biodegradable coffee grounds filler and its effect on the hydrophobicity, mechanical and thermal properties of biodegradable PBAT composites. J. Appl. Polym. Sci. 134 (8): 1-11.
  19. Fang, H., Jiang, F., Wu, Q., Ding, Y., and Wang, Z. 2014. Supertough polylactide materials prepared through in situ reactive blending with PEG-based diacrylate monomer. ACS Appl. Mater. Interfaces 6 (16): 13552-13563. https://doi.org/10.1021/am502735q
  20. Gaikwad, A.N., Wood, E.R., Ngai, T., and Lodge, T.P. 2008. Two calorimetric glass transitions in miscible blends containing poly(ethylene oxide). Macromolecules 41 (7): 2502-2508. https://doi.org/10.1021/ma702429r
  21. Nijenhuis, A.J., Colstee, E., Grijpma, D.W., and Pennings, A.J. 1996. High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polymer (Guildf). 37 (26): 5849-5857. https://doi.org/10.1016/S0032-3861(96)00455-7
  22. Eom, Y., Choi, B., and Park, S. il 2019. A Study on Mechanical and Thermal Properties of PLA/PEO Blends. J. Polym. Environ. 27 (2): 256-262. https://doi.org/10.1007/s10924-018-1344-y
  23. Qiu, J., Xing, C., Cao, X., Wang, H., Wang, L., Zhao, L., and Li, Y. 2013. Miscibility and double glass transition temperature depression of poly(L-lactic acid) (PLLA)/poly (oxymethylene) (POM) blends. Macromolecules 46 (14): 5806-5814. https://doi.org/10.1021/ma401084y
  24. Heald, C.R., Stolnik, S., Kujawinski, K.S., De Matteis, C., Garnett, M.C., Illum, L., Davis, S.S., Purkiss, S.C., Barlow, R.J., and Gellert, P.R. 2002. Poly(lactic acid)-poly(ethylene oxide) (PLA-PEG) nanoparticles: NMR studies of the central solidlike PLA core and the liquid PEG corona. Langmuir 18(9): 3669-3675. https://doi.org/10.1021/la011393y