• Title/Summary/Keyword: PLA+W

Search Result 38, Processing Time 0.029 seconds

Phospholipid polymer can reduce cytotoxicity of poly (lactic acid) nanoparticles in a high-content screening assay

  • Kim, Hyung Il;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.2
    • /
    • pp.95-104
    • /
    • 2014
  • The objective of this study was to evaluate the cytotoxicity of poly (lactic acid) (PLA) nanoparticles. We used a water-soluble, amphiphilic phospholipid polymer, poly (2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB30W), as a stabilizer for the PLA nanoparticles. The PLA nanoparticles and PMB30W-modified PLA (PLA/PMB30W) nanoparticles were prepared by evaporating tetrahydrofuran (THF) from its aqueous solution. Precipitation of the polymers from the aqueous solution produced PLA and PLA/PMB30W nanoparticles with a size distribution of $0.4-0.5{\mu}m$. The partial coverage of PMB30W on the surface of the PLA/PMB30W nanoparticles was confirmed by X-ray photoelectron spectroscopy (XPS) and dynamic light-scattering (DLS). A high-content automated screening assay (240 random fields per group) revealed that the PLA nanoparticles induced apoptosis in a mouse macrophage-like cell line (apoptotic population: 73.9% in 0.8 mg PLA/mL), while the PLA/PMB30W nanoparticles remained relatively non-hazardous in vitro (apoptotic population: 13.8% in 0.8 mg PLA/mL). The reduction of the apoptotic population was attributed to the phosphorylcholine groups in the PMB30W bound to the surface of the nanoparticle. In conclusion, precipitation of PLA in THF aqueous solution enabled the preparation of PLA nanoparticles with similar shapes and size distribution but different surface characteristics. PMB30W was an effective stabilizer and surface modifier, which reduced the cytotoxicity of PLA nanoparticles by enabling their avoidance of the mononuclear phagocyte system.

Characteristics of LED Lighting Device Using Heat Sinks of 7.5 W CMP-PLA (7.5 W CMP-PLA 방열판을 적용한 LED 등기구 특성)

  • Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.920-923
    • /
    • 2013
  • In this paper, the characteristics of a carbon nanotube composite heat sink proposed to replace the advanced Al heat sinks for LED lighting devices were studied. Proposed CMP-PLA heat sink was made by mixing 20~70 wt% carbon nanotube, 20~70 wt% bio-degradable polymer of melt-blended PLA (poly lactic acid) and PBS (poly butylene succinate) and PLA nucleating agents composed of the mixture of soybean oil and biotites, at $150{\sim}220^{\circ}C$ with 1,000~1,500 rpm. Optical and electric characteristics of 7.5 W LED lighting devices using heat sinks with such prepared CMP-PLA were investigated. And, the properties of the heat, which was not released from the CMP-PLA type heat sinks, was also investigated. The color temperature of LED lighting devices using the CMP-PLA heat sinks was 5,956 K, which is x= 0.32 and y= 0.34 in the XY chromaticity, and the color rendering index was 75. The luminous flux and the luminous efficiency of LED lighting devices using the CMP-PLA heat sinks was 540.6 lm and 72.68 lm/W respectively. Measured initial temperature of the heat sinks was $27^{\circ}C$, and their temperature increased as time to be saturated at $52^{\circ}C$ after an hour.

Properties and Biodegradability of Polylactide for Paper Coating Application - $Poly(_{L} -lactide)\;and\;Poly(_{D}-lactide)$ Blend -

  • Lim Hyun A;Kang Jin Ha
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.5 s.108
    • /
    • pp.53-61
    • /
    • 2004
  • [ $Poly(_{D}-ldactide)\;(_{D}-PLA)$ ] was synthesized to have low molecular weight for miscible blends with a high molecular $poly(_{L}-lactide)\;(_{L} -PLA)$. The blends were prepared by dissolving the two components of $_{L}-PLA\;and\;_{D}-PLA\;(w/w)$ in chloroform (l00/0, 90/10, 70/30, 50/50, 30/70, 0/100). The miscibility of these miscible blends was characterized by gel-permeation chromatography (GPC), differential scanning calorimetry (DSC), and the selective degradability by enzymes (proteinase K, subtilisin and $\alpha$-chymotrypsin). The coating efficiency of PLA blends onto paper was determined and the degrading activity cellulases by on these blends. The miscibility, coating efficiency and enzymatic degradability of these blends were decreased according to increasing of $_{D}-PLA$ blending part. Such results were attributed to the extent of coating application of PLA, with better miscibility (compatibility), coating efficiency and degradability due to a higher $_{L}-PLA$ content.

Interfacial Adhesion of Silk/PLA Biocomposites by Plasma Surface Treatment (플라즈마 표면처리에 의한 Silk/PLA 바이오복합재료의 계면접착)

  • Chu, Bo Young;Kwon, Mi Yeon;Lee, Seung Goo;Cho, Donghwan;Park, Won Ho;Han, Seong Ok
    • Journal of Adhesion and Interface
    • /
    • v.5 no.4
    • /
    • pp.9-16
    • /
    • 2004
  • Silk fibers were subjected to argon and ethylene plasma treatments in order to improve the interfacial adhesion with polylactic acid (PLA). After the plasma surface treatment, the surface morphology and surface adhesion of silk fibers to the PLA resin were largely changed. Various plasma treatment conditions were used in this work: 10, 25, 50, 100 and 150 W of electric power, 1, 3, 5, 7 and 10 minutes of treatment time, and 10 and 50 sccm of a gas flow rate. The interfacial shear strength of plasma-treated Silk/PLA biocomposites was measured by a single fiber micro-droplet debonding test method. The result provided an optimal plasma treatment condition to obtain the improved interfacial adhesion in the Silk/PLA biocomposites.

  • PDF

Evaluation of Shielding Performance of Tungsten Containing 3D Printing Materials for High-energy Electron Radiation Therapy (고에너지 전자선 치료 시 텅스텐 함유 3D 프린팅 물질의 차폐 성능 평가)

  • Yong-In Cho;Jung-Hoon Kim;Sang-Il Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.641-649
    • /
    • 2023
  • This study compares and analyzes the performance of a shield manufactured using 3D printing technology to find out its applicability as a shield in high-energy electron beam therapy. Actual measurement and monte carlo simulations were performed to evaluate the shielding performance of 3D printing materials for high-energy electron beams. First, in order to secure reliability for the simulation, a source term evaluation was conducted by referring to the IAEA's TRS-398 recommendation. Second, to analyze the shielding performance of PLA+W (93%), a specimen was manufactured using a 3D printer, and the shielding rate by thickness according to electron beam energy was evaluated. Third, the shielding thickness required for electron beam treatment was calculated through a comparative analysis of shielding performance between PLA+W (93%) and existing shielding bodies. First, as a result of the evaluation of the source term through actual measurement and simulation, the TRS-398 recommendation was satisfied with an error of less than 1%, thereby securing the reliability of the simulation. Second, as a result of the shielding performance analysis for PLA+W (93%), 6 MeV electron beams showed a shielding rate of more than 95% at 3.12 mm, and 15 MeV electron beams showed a shielding rate of more than 90% at 10 mm thickness. Third, through simulations, comparative analysis between PLA+W (93%) materials and existing shields showed high shielding rates within the same thickness in the order of tungsten, lead, copper, PLA+W (93%), and aluminum. 6 MeV electron beams showed almost similar shielding rates at 5 mm or more and 15 MeV electron beams. Through this study in the future, it is judged that it can be used as basic data for the production and application of shielding bodies using PLA+W (93%) materials in high-energy electron beam treatment.

Surface Characteristics of PLA(Polylactic acid) Film Treated by Atmospheric Pressure Plasma (대기압 플라즈마 처리에 따른 PLA(polylactic acid) 필름의 표면특성 변화)

  • Jung, Jin Suk;Liu, Xuyan;Choi, Ho Suk
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.59-64
    • /
    • 2009
  • This study investigated the surface characteristics of polylactic acid (PLA) film after one atmospheric pressure plasma treatment. We used de-ionized water and diiodomethane as polar and non-polar solvents, respectively, for measuring contact angles, and subsequently calculated the surface free energy of PLA film. The contact angle and free energy of PLA surface were optimized at the treatment time of 30 sec, RF-power of 70 W, Ar gas flow rate of 6 lpm and air exposure time of 5 min. We analyzed the change of chemical functional groups on the surface of PLA film through XPS and were able to observe the change of polar functional groups such as -C=O, -CO, -COO on the surface of PLA film after one atmospheric pressure plasma treatment.

Preparation of Emulsion from Biodegradable Polymer (I) - Preparation of PLA and PBS Emulsions - (생분해성 고분자를 이용한 발수 에멀션의 제조 (I) - PLA 및 PBS 에멀션의 제조 -)

  • Lee, Min-Hyung;Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.6
    • /
    • pp.28-35
    • /
    • 2012
  • Water-in-oil emulsion (W/O) and oil-in-water emulsion (O/W) types biodegradable polymer emulsions prepared to PLA and PBS. The optimal mixing ratio of polymer : solvent : OA : TEA : water was found be 10 : 40 : 4 : 6 : 30(g) when preparing emulsions. Biodegradability was most retained after preparation of polymer emulsions. Particle size of PLA and PBS emulsions were 2-3 ${\mu}m$ and 3-4 ${\mu}m$, respectively. Molecular weight of PLA and PBS emulsions were 108,000 and 92,000, respectively. And molecular weight of PLA and PBS emulsions became slightly lower than those of pellets.

Evaluation of Metal Composite Filaments for 3D Printing (3D 프린팅용 금속 입자 필라멘트의 물성 및 차폐 능력 평가)

  • Park, Ki-Seok;Choi, Woo-Jeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.697-704
    • /
    • 2021
  • It is hard to get Filaments which are materials of the 3D printing Fused Deposition Modeling(FDM) method as radiation shielding in Korea. and also related research is insufficient. This study aims to provide basic data for the development of radiation shields using 3D printing by evaluating the physical properties and radiation shielding capabilities of filaments containing metal particles. after selecting five metal filaments containing metal particle reinforcement materials, the radiation shielding rate was calculated according to the Korean Industrial Standard's protective equipment test method to evaluate physical properties such as tensile strength, density, X-ray Diffraction(XRD), and weight measurement using ASTM's evaluation method. In the tensile strength evaluation, PLA + SS was the highest, ABS + W was the lowest, and ABS + W is 3.13 g/cm3 which value was the highest among the composite filaments in the density evaluation. As a result of the XRD, it may be confirmed that the XRD peak pattern of the particles on the surface of the specimen coincides with the pattern of each particle reinforcing material powder metal, and thus it was confirmed that the printed specimen contained powder metal. The shielding effect for each 3D printed composite filament was found to have a high shielding rate in proportion to the effective atomic number and density in the order of ABS + W, ABS + Bi, PLA+SS, PLA + Cu, and PLA + Al. In this study, it was confirmed that the metal particle composite filament containing metal powder as a reinforcing material has radiation shielding ability, and the possibility of using a radiation shielding filament in the future.