• Title/Summary/Keyword: PL excitation

Search Result 129, Processing Time 0.027 seconds

Growth and photoluminescence properties of Er : Mg : LiNbO$_3$single crystal fibers by $\mu$-PD method ($\mu$-PD법에 의한 Er : Mg : LiNbO$_3$fiber 결정 성장 및 형광특성)

  • 양우석;윤대호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.389-393
    • /
    • 2000
  • High-quality $Er^{3+}$ doped Mg : $LiNbO_3$single crystal fibers were grown by a micro-pulling down ($\mu$-PD) method. Single crystal fibers were pulled down through the nozzle, at a pulling down rate of 0.5 mm/min and using a Pt crucible with a nozzle 1 mm in diameter in air atmosphere. Defects such as bubbles, cracks and inclusions were not detected in any of the grown crystals. The optical transmission of Er : Mg : $LiNbO_3$crystal was measured and the energy levels of $Er_2O_3$ ion could be calculated. The photoluminescence spectrum of crystal fibers showed an energy band emission with the strongest line corresponding to the $^4I_{3/2}{\to}^4I_{15/2}$transition. The concentration dependence of the entire wavelength region emission intensity upon excitation intensity measured emission intensity for the 3 mol% MgO doped fibers was larger than that for the 1, 5 mol% MgO doped fibers.

  • PDF

Preparation and Characterization of Zn2SiO4:Mn2+ Green Phosphor with Solid State Reaction (고상법에 의한 Zn2SiO4:Mn2+녹색 형광체의 제조와 특성에 관한 연구)

  • Yoo, Hyeon-Hee;Nersisyan, Hayk;Won, Hyung-Il;Won, Chang-Whan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.352-356
    • /
    • 2011
  • [ $Zn_{2(1-x)}Mn_xSiO_4$ ]$0.07{\leq}x{\leq}0.15$) green phosphor was prepared by solid state reaction. The first heating was at $900^{\circ}C-1250^{\circ}C$ in air for 3 hours and the second heating was at $900^{\circ}C$ in $N_2/H_2$(95%/5%) for 2 hours. The size effect of $SiO_2$ in forming $Zn_2SiO_4$ was investigated. The temperature for obtaining single phase $Zn_2SiO_4$ was lowered from $1100^{\circ}C$ to $1000^{\circ}C$ by decreasing the $SiO_2$ particle size from micro size to submicro size. The effect of the activators for the Photoluminescence (PL) intensity of $Zn_2SiO_4:Mn^{2+}$ was also investigated. The PL intensity properties of the phosphors were investigated under vacuum ultraviolet excitation (147 nm). The emission spectrum peak was between 520 nm and 530 nm, which was involved in green emission area. $MnCl_2{\cdot}4H_2O$, the activator source, was more effective in providing high emission intensity than $MnCO_3$. The optimum conditions for the best optical properties of $Zn_2SiO_4:Mn^{2+}$ were at x = 0.11 and $1100^{\circ}C$. In these conditions, the phosphor particle shape was well dispersed spherical and its size was 200 nm.

Synthesis and Characterization of Spherical SiO2@Y2O3 : Eu Core-Shell Composite Phosphors (구형 SiO2@Y2O3: Eu 코어-쉘 복합체 형광체 합성 및 특성)

  • Song, Woo-Seuk;Yang, Hee-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.447-453
    • /
    • 2011
  • The monodisperse spherical $SiO_2$ particles were overcoated with $Y_2O_3:Eu^{3+}$ phosphor layers via a Pechini sol-gel process and the resulting $SiO_2@Y_2O_3:Eu^{3+}$ core-shell phosphors were subsequently annealed at $800^{\circ}C$ at an ambient atmosphere. The crystallographic structure, morphology, and luminescent property of core-shell structured $SiO_2@Y_2O_3:Eu^{3+}$ phosphors were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and photoluminescence (PL). The spherical, nonagglomerated $SiO_2$ particles prepared by a Stober method exhibited a relatively narrow size distribution in the range of 260-300 nm. The thickness of phosphor shell layer in the core-shell particles can be facilely controlled by varying the coating number of $Y_2O_3:Eu^{3+}$ phosphors. The core-shell structured $SiO_2@Y_2O_3:Eu^{3+}$ phosphors showed a strong red emission, which was dominated by the $^5D_0-^7F_2$ transition (610 nm) of $Eu^{3+}$ ion under the ultraviolet excitation (263 nm). The PL emission properties of $SiO_2@Y_2O_3:Eu^{3+}$ phosphors were also compared with pure $Y_2O_3:Eu^{3+}$ nanophosphors.

Preparation and Luminescent Property of Eu3+-doped A3Al1-zInzO4F (A = Ca, Sr, Ba, z = 0, 0.1) Phosphors (Eu3+-doped A3Al1-zInzO4F (A = Ca, Sr, Ba, z = 0, 0.1)의 합성과 형광특성)

  • Kim, Yeo-Jin;Park, Sang-Moon
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.644-649
    • /
    • 2011
  • [ $A_{3-2x/3}Al_{1-z}In_{z}O_4F:Eu_x^{3+}$ ](A = Ca, Sr, Ba, x = -0.15, z = 0, 0.1) oxyfluoride phosphors were simply prepared by the solid-state method at $1050^{\circ}C$ in air. The phosphors had the bright red photoluminescence (PL) spectra of an $A_{3-2x/3}Al_{1-z}In_{z}O_4F$ for $Eu^{3+}$ activator. X-ray diffraction (XRD) patterns of the obtained red phosphors were exhibited for indexing peak positions and calculating unit-cell parameters. Dynamic excitation and emission spectra of $Eu^{3+}$ activated red oxyfluoride phosphors were clearly monitored. Red and blue shifts gradually occurred in the emission spectra of $Eu^{3+}$ activated $A_3AlO_4F$ oxyfluoride phosphors when $Sr^{2+}$ by $Ca^{2+}$ and $Ba^{2+}$ ions were substituted, respectively. The concentration quenching as a function of $Eu^{3+}$ contents in $A_{3-2x/3}AlO_4F:Eu^{3+}$ (A = Ca, Sr, Ba) was measured. The interesting behaviors of defect-induced $A_{3-2x/3}Al_{1-z}In_{z}O_{4-{\alpha}}F_{1-{\delta}}$ phosphors with $Eu^{3+}$ activator are discussed based on PL spectra and CIE coordinates. Substituting $In^{3+}$ into the $Al^{3+}$ position in the $A_{3-2x/3}AlO_4F:Eu^{3+}$ oxyfluorides resulted in the relative intensity of the red emitted phosphors noticeably increasing by seven times.

Effects of Eu3+ Concentration on the Photoluminescence Properties of Red-orange Phosphor Gd1-xPO4:Eux3+ (Eu3+ 농도가 적주황색 형광체 Gd1-xPO4:Eux3+의 발광 특성에 미치는 영향)

  • Cho, Seon-Woog
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.611-616
    • /
    • 2011
  • Red-orange phosphors $Gd_{1-x}PO_4:{Eu_x}^{3+}$ (x = 0, 0.05, 0.10, 0.15, 0.20) were synthesized with changing the concentration of $Eu^{3+}$ ions using a solid-state reaction method. The crystal structures, surface morphology, and optical properties of the ceramic phosphors were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectrophotometry. The XRD results were in accordance with JCPDS (32-0386), and the crystal structures of all the red-orange phosphors were found to be a monoclinic system. The SEM results showed that the size of grains increases and then decreases as the concentration of $Eu^{3+}$ ionincreases. As for the PL properties, all of the ceramic phosphors, irrespective of $Eu^{3+}$ ion concentration, had orange and red emissions peaks at 594 nm and 613 nm, respectively. The maximum excitation and emission spectra were observed at 0.10 mol of $Eu^{3+}$ ion concentration, just like the grain size. An orange color stronger than the red means that $^5D_0{\rightarrow}^7F_1$ (magnetic dipole transition) is dominant over the $^5D_0{\rightarrow}^7F_2$ (electric dipole transition), and $Eu^{3+}$ is located at the center of the inversion symmetry. These properties contrasted with those of a red phosphor $Y_{1-x}PO_4:{Eu_x}^{3+}$, which has a tetragonal system. Therefore, we confirm that the crystal structure of the host material has a major effect on the resulting color.

Effects of Flux and Ta5+ Substitution on the Photoluminescence of Lu(Nb,Ta)O4:Eu3+ Phosphors (융제 및 Ta5+ 치환이 Lu(Nb,Ta)O4:Eu3+ 형광체의 발광 특성에 미치는 영향)

  • Kim, Jiwon;Kim, Young Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.559-566
    • /
    • 2019
  • $Lu(Nb,Ta)O_4:Eu^{3+}$ powders are synthesized by a solid-state reaction process using LiCl and $Li_2SO_4$ fluxes. The photoluminescence (PL) excitation spectra of the synthesized powders consist of broad bands at approximately 270 nm and sharp peaks in the near ultraviolet region, which are assigned to the $Nb^{5+}-O^{2-}$ charge transfer of $[NbO_4]^{3-}$ niobates and the f-f transition of $Eu^{3+}$, respectively. The PL emission spectra exhibit red peaks assigned to the $^5D_0{\rightarrow}^7F_J$ transitions of $Eu^{3+}$. The strongest peak is obtained at 614 nm ($^5D_0{\rightarrow}^7F_2$), indicating that the $Eu^{3+}$ ions are incorporated into the $Lu^{3+}$ asymmetric sites. The addition of fluxes causes the increase in emission intensity, and $Li_2SO_4$ flux is more effective for enhancement in emission intensity than is LiCl flux. The substitution of $Ta^{5+}$ for $Nb^{5+}$ results in an increase or decrease in the emission intensity of $LuNb_{1-x}Ta_xO_4:Eu^{3+}$ powders, depending on amount and kind of flux. The findings are explained using particle morphology, modification of the $[NbO_4]^{3-}$ structure, formation of substructure of $LuTaO_4$, and change in the crystal field surrounding the $Eu^{3+}$ ions.

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

Photoluminescence Properties of Novel $Mg_{2}SnO_{4}:Mn$ Phosphor (새로운 $Mg_{2}SnO_{4}:Mn$ 형광체의 광 발광 특성)

  • Kim, Kyung-Nam;Jung, Ha-Kyun;Park, Hee-Dong;Kim, Do-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.817-821
    • /
    • 2001
  • A new $Mg_{2-x}MN_xSnO_4$ phosphor with an inverse spinel structure was synthesized by the solid-state reaction technique. The photoluminescence properties of the $Mg_2SnO_4$:Mn phosphors were investigated under 147nm -vacuum ultraviolet ray excitation. The Mn-doped $Mg_2SnO_4$ phosphor exhibited high emission intensity with the spectrum centered at 500nm wavelength. It was explained that the green emission in $Mg_2SnO_4$:Mn phosphor has originated from energy transfer from $^4T_1$ to $^6A_1$ of $Mn^{2+}$ ion at tetrahedral site of the spinel structure. The $Mn^{2+}$ ion concentration exhibiting the maximum emission intensity under the excitation of 147nm-vacuum ultraviolet ray was 0.25mol%. And the decay time of the phosphor was shorter than 10ms.

  • PDF

Photostimulated Luminescence and Photoluminescence of SrCl2:Eu2+ Phosphors (SrCl2:Eu2+ 형광체의 광발광 및 광자극발광 특성)

  • Doh, Sih-Hong;Seo, Hyo-Jin;Kim, Young-Kook;Kim, Do-Sung;Kim, Sung-Hwan;Kim, Chan-Jung;Lee, Byung-Hwa;Kim, Wan;Kang, Hee-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.319-326
    • /
    • 2002
  • $SrCl_2:Eu^{2+}$ phosphors were prepared by the solid phase reaction method, and their photostimulated luminescence(PSL) and photoluminescence(PL) characteristics were investigated. The PSL and PL peak of the $SrCl_2:Eu^{2+}$ phosphors are due to the $5d{\rightarrow}4f$ transition of $Eu^{2+}$ ions in phosphors. The PSL and PL spectrum obtained by the 355nm excitation was observed in $380{\sim}440\;nm$ region with the peak at 407 nm. The dose response of the PSL phosphors were linear within $2.5\;mGy{\sim}200\;mGy$ of 100 kV X-ray. The fading of the phosphors at room temperature was approximately 60% after 20 min.

CaxSr2-xSiO4:Eu2+ Green-emitting Nano Phosphor for Ultraviolet Light Emitting Diodes

  • Kim, Jong Min;Choi, Hyung Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.249-252
    • /
    • 2014
  • The aim of this work is to investigate the effect of $Ca_xSr_{2-x}$ and activator on the structural and luminescent properties of green-emitting $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ nano phosphor. Using urea as fuel and ammonium nitrate as oxidizer, $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ has been successfully synthesized, using a combustion method. The particles were found to be small, spherical and of round surface. SEM imagery showed that the phosphors particles are of nanosize. The $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ emission spectrum for 360 nm excitation showed a single band, with a peak at 490 nm, which is a green emission. The highest luminous intensity was at $1,000^{\circ}C$, which was obtained when the $Eu^{2+}$ content (y) was 0.05. The results support the application of $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ phosphor as a fluorescent material for ultraviolet light-emitting diodes (UV-LEDs). Characteristics of the synthesized $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ phosphor were investigated by means of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and photoluminescence (PL) detection.