DOI QR코드

DOI QR Code

CaxSr2-xSiO4:Eu2+ Green-emitting Nano Phosphor for Ultraviolet Light Emitting Diodes

  • Kim, Jong Min (Department of Electrical Engineering, Gachon University) ;
  • Choi, Hyung Wook (Department of Electrical Engineering, Gachon University)
  • Received : 2013.07.09
  • Accepted : 2014.06.03
  • Published : 2014.10.25

Abstract

The aim of this work is to investigate the effect of $Ca_xSr_{2-x}$ and activator on the structural and luminescent properties of green-emitting $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ nano phosphor. Using urea as fuel and ammonium nitrate as oxidizer, $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ has been successfully synthesized, using a combustion method. The particles were found to be small, spherical and of round surface. SEM imagery showed that the phosphors particles are of nanosize. The $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ emission spectrum for 360 nm excitation showed a single band, with a peak at 490 nm, which is a green emission. The highest luminous intensity was at $1,000^{\circ}C$, which was obtained when the $Eu^{2+}$ content (y) was 0.05. The results support the application of $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ phosphor as a fluorescent material for ultraviolet light-emitting diodes (UV-LEDs). Characteristics of the synthesized $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ phosphor were investigated by means of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and photoluminescence (PL) detection.

Keywords

References

  1. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett., 64, 1687 (1994). [DOI: http://dx.doi.org/10.1063/1.111832].
  2. M. G. Craford, Commerical, Light Emitting Diode Technology (Kluwer Academic Publishers, Dordrecht, 1996).
  3. L. S. Rohwer and A. M. Srivastava, Electrochem. Soc. Interface, 12, 36 (2003).
  4. S. Dalmasso, B. Damilano, C. Pernot, A. Dussaigne, D. Byrne, N. Grandjean, M. Leroux, and J. Massies, Phys. Status Solidi A, 192, 139 (2002). [DOI: http://dx.doi.org/10.1002/1521-396X(200207)192:1<139::AID-PSSA139>3.0.CO;2-G].
  5. Z. C. Wu, J. X. Shi, M. L. Gong, J. Wang, and Q. Su, Mater. Chem. Phys., 103, 415 (2007). [DOI: http://dx.doi.org/10.1016/j.matchemphys.2007.02.052].
  6. Z. Q. Long, L. Ren, Z. W. Zhu, D. L. Cui, N. Zhao, M. L. Li, M. S. Cui, and X. W. Huang, J. Rare Earths, 24, 137 (2006). [DOI: http://dx.doi.org/10.1016/S1002-0721(07)60320-2].
  7. C. F. Wu, Y. H. Wang, and W. Jie, J. Alloys Compd., 436, 383 (2007). [DOI: http://dx.doi.org/10.1016/j.jallcom.2006.07.056].
  8. L. X. Yu, D. C. Li, M. X. Yue, J. Yao, and S. Z. Lu, Chem. Phys., 326, 478 (2006). [DOI: http://dx.doi.org/10.1016/j.chemphys.2006.03.008].
  9. W. J. Park, Y. H. Song, and D. H. Yoon, Mater. Sci. and Eng. B, 173, 76 (2010). [DOI: http://dx.doi.org/10.1016/j.mseb.2010.01.041].
  10. Z. Yang, X. Li, Y. Yang, and X. Li, J. Lumin., 122, 707 (2007). [DOI: http://dx.doi.org/10.1016/j.jlumin.2006.01.266].
  11. F. Ying, Z. Weidong, H. Yunsheng, Y. Xinyu, and H. Xiaowei, Journal of Rare Earths, 25, 573 (2007). [DOI: http://dx.doi.org/10.1016/S1002-0721(07)60565-1].
  12. C. W. Lee and O. Henry, J. Appl. Phys., 95, 7717 (2004). [DOI: http://dx.doi.org/10.1063/1.1738529].
  13. Z. Qijin and W. Pin, Chin. J. Polym. Sci., 15, 187 (1997).
  14. K.Y. Jung and J.H. Seo, Electrochem. Solid State, 11, J64 (2008). [DOI: http://dx.doi.org/10.1149/1.2917584].