• Title/Summary/Keyword: PIT Method

Search Result 244, Processing Time 0.037 seconds

A Study on the Earthwork Volume Decision using the Spline Interpolation (Spline보간법을 이용한 토공량결정에 관한 연구)

  • 문두열
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.3
    • /
    • pp.305-313
    • /
    • 2000
  • The calculation of earthwork plays a major role in plan or design of many civil engineering projects, and thus it has become very important to advanced the accuracy of earthwork calculation. Current methods used for estimating the volume of pit excavation assumes that the ground profile between the grid points is linear(trapezoidal rule), or nonlinear(simpson's formulas). Generally speaking. the nonlinear profile formulas provide better accuracy than the linear profile formulas. However, all the formulas mentioned have a common drawback to ground profile, such as sharp corners or the grid points of any two straight lines. In this paper, mathematical model for a searching examination the drawbacks of the current methods is presented. Also, the presented formular, the spot height method, and chamber formulas, chen and lin method are compared with the volumes of the pits in these examples. As a result of this study, algorithm of a proposal area formula by spline method should provide a better accuracy than the spot height method, chamber formulas, chen and lin method. The mathematical model mentioned make an offer maximum accuracy in estimating the volume of a pit excavation.

  • PDF

A numerical study on the seepage failure by heave in sheeted excavation pits

  • Koltuk, Serdar;Fernandez-Steeger, Tomas M.;Azzam, Rafig
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.513-530
    • /
    • 2015
  • Commonly, the base stability of sheeted excavation pits against seepage failure by heave is evaluated by using two-dimensional groundwater flow models and Terzaghi's failure criterion. The objective of the present study is to investigate the effect of three-dimensional groundwater flow on the heave for sheeted excavation pits with various dimensions. For this purpose, the steady-state groundwater flow analyses are performed by using the finite element program ABAQUS 6.12. It has been shown that, in homogeneous soils depending on the ratio of half of excavation width to embedment depth b/D, the ratio of safety factor obtained from 3D analyses to that obtained from 2D analyses $FS_{(3D)}/FS_{(2D)}$ can reach up to 1.56 and 1.34 for square and circular shaped excavations, respectively. As failure body, both an infinitesimal soil column adjacent to the wall (Baumgart & Davidenkoff's criterion) and a three-dimensional failure body with the width suggested by Terzaghi for two-dimensional cases are used. It has been shown that the ratio of $FS_{(Terzaghi)}/FS_{(Davidenkoff)}$ varies between 0.75 and 0.94 depending on the ratio of b/D. Additionally, the effects of model size, the shape of excavation pit and anisotropic permeability on the heave are studied. Finally, the problem is investigated for excavation pits in stratified soils, and important points are emphasized.

Effect of surface anodization on stability of orthodontic microimplant

  • Karmarker, Sanket;Yu, Won-Jae;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.42 no.1
    • /
    • pp.4-10
    • /
    • 2012
  • Objective: To determine the effect of surface anodization on the interfacial strength between an orthodontic microimplant (MI) and the rabbit tibial bone, particularly in the initial phase aft er placement. Methods: A total of 36 MIs were driven into the tibias of 3 mature rabbits by using the self-drilling method and then removed aft er 6 weeks. Half the MIs were as-machined (n = 18; machined group), while the remaining had anodized surfaces (n = 18; anodized group). The peak insertion torque (PIT) and the peak removal torque (PRT) values were measured for the 2 groups of MIs. These values were then used to calculate the interfacial shear strength between the MI and cortical bone. Results: There were no statistical differences in terms of PIT between the 2 groups. However, mean PRT was significantly greater for the anodized implants ($3.79{\pm}1.39$ Ncm) than for the machined ones ($2.05{\pm}1.07$ Ncm) (p < 0.01). The interfacial strengths, converted from PRT, were calculated at 10.6 MPa and 5.74 MPa for the anodized and machined group implants, respectively. Conclusions: Anodization of orthodontic MIs may enhance their early-phase retention capability, thereby ensuring a more reliable source of absolute anchorage.

Use of Hydrazine for Pitting Corrosion Inhibition of Copper Sprinkler Tubes: Reaction of Hydrazine with Corrosion By-Products

  • Suh, Sang Hee;Kim, Sohee;Suh, Youngjoon
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.247-256
    • /
    • 2017
  • The feasibility of using hydrazine for inhibiting pitting corrosion in copper sprinkler tubes was investigated by examining microscopical and structural evolution of corrosion by-products with SEM, EDS, and XRD. Hydrazine removed dissolved oxygen and reduced CuO and $Cu_2O$ as well. The stable phase was changed from CuO to $Cu_2O$ or Cu depending on hydrazine concentration. Hydrazine concentration of 500 ppm could convert all CuO corrosion by-products to $Cu_2O$. In a tightly sealed acryl tube filled with aqueous solution of 500 ppm hydrazine, octahedral $Cu_2O$ particles were formed while plate-like structures with high concentration of Cu, O, N and C were formed near a corrosion pit. The inside structure of a corrosion pit was not altered by hydrazine aqueous solution. Uniform corrosion of copper was almost completely stopped in aqueous solution of 500 ppm hydrazine. Corrosion potential of a copper plate was linearly dependent on log (hydrazine concentration). The concept of stopping pitting corrosion reaction by suppressing oxygen reduction reaction could be verified by applying this method to a reasonable number of real sprinkler systems before full-scale application.

A Study on the Characteristics of Blasting Vibration from Different Excavation Methods in Underground Mine (지하채굴공동에서 굴착방법에 따른 발파진동의 특성에 관한 연구)

  • Kang Choo-Won;Ryu Pog-Hyun
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Recently, most of limestone quarries have been not mined by open-pit mining but by underground excavation to reduce environmental pollution. As a result, the size of underground galleries became bigger to maintain mass-production close to open-pit mining. However, the scale of pillars and galleries as well as the excavation methods may induce a few adverse problems for the stability of a mined gallery. In this study, the nomogram analysis and the prediction of rock damage zone induced by blasting were carried out. The testing conditions include concurrent blasting of two adjacent galleries, concurrent blasting of a transport drift and a inclined shaft, sequential blasting of two galleries, and separate blasting for each gallery. For each testing condition, blast vibration velocity was measured and analyzed. From the prediction formulas for blast vibration velocity derived in this study, the maximum depth of rock damage zone induced by blasting were also predicted.

Self-repairing Technology by Electrophoresis of Ni Nano-Particles for Heat Exchanger Tubes (Ni 나노입자의 전기영동 코팅에 의한 전열관 자가보수 기술 개발)

  • Lee, Gyoung-Ja;Lee, Min-Ku;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.238-244
    • /
    • 2007
  • The electrophoretic deposition process of Ni nano-particles in organic suspension was employed for self-repairing of heat exchanger tubes. For this purpose, Ni nano-particles prepared by levitational gas condensation method were dispersed into the solution of ethanol with the addition of dispersant Hypermer KD2. For electrophoretic deposition of Ni nano-particles on the Ni alloy specimen, constant electric fields of 20 and 100 V $cm^{-1}$ were applied to the specimen in Ni-dispersed solution. It was found that as electrophoretic deposition proceeds, the size of the pit or crack remarkably decreased due to the agglomeration of Ni nano-particles at the pit or crack. This strongly suggests that the electrophoretic mobility of the charged particles is larger for the damaged part with a higher current value rather than outer surfaces with a lower current value.

A Study on the Characteristics of Cast Bonding Aluminium Alloy and Fe-17wt%Cr Steel with Vacuum Die Casting (진공다이캐스트법에 의한 Al합금과 Fe-17wt%Cr 강의 주조접합 특성연구)

  • Kim, Yong-Hyun;Kim, Eok-Soo;Kim, Heung-Sik;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.410-418
    • /
    • 1999
  • To overcome the undesirable deformation, peeling off and geometrical restrictions which were mainly caused by differences in thermal expansion coefficients during the cladding of aluminum strip and stainless strip, new processing method based on vacuum die casting is designed and implemented in fabricating Fe-17wt%Cr steel (stainless steel). To increase cast-bonding ability, the surface of Fe-17wt%Cr steel is electrochemical etched to have optimum pit size (above 0.2 mm) and pit density (above 30%). The implementation of vacuum die casting by using surface treated stainless steel (Fe-17wt%Cr Steel) produces good trial products having acceptable cast-bonding ability. The enabling conditions for cast-bonding are pouring temperature $690^{\circ}C$, filling speed 30 m/sec and casting pressure $800\;kg/cm^2$. The microscopic observation of cast-bonded Al/Fe-17wt%Cr steel does not show any evidence of intermetallic compounds. The bonding strength of trial products is $150-400\;kg/cm^2$ and this is stronger than conventionally cladded metal having $30-70\;kg/cm^2$.

  • PDF

Effects of Coating and Additivw Gases on the corrosion Properties of Ti$_{x}$N Films Preapered with DC Magneton Sputtering Method (DC Magnetron Sputtering법으로 제작한 Ti$_{x}$N박박의 부식특성에 미치는 코팅조건과 첨가원소의 영향)

  • 김학동;이봉상;조성석
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.5
    • /
    • pp.251-260
    • /
    • 1998
  • Stainless Steel is being used widely for various purposes due to its good corrosion resistance. There have been many researches to produce colored stainless steel by several methods such as anodizing and ion-plating. In this experiment, we $Ti_XN$(C,O) on the films SUS304, aluminium, and glass substrates with DC magentron sputterinng system made by Leybold Hereus, and strdied the structur, corrsion and pit characture of the TiXN observed by TeM image was black and whink and white columnar hed a very fine(200$\AA$) dense sturcture,and the diffraction resistance at the $3{\times}10_6A/\textrm{cm}^2$ and $10_{10}\times{cm}^2$current density were obtained in the under-stoichiometry $Ti_xN$ compound of Ar/$N_2$(Ar:$N_2$=100:6, titanium-rich compound) and the over-stoichiometry compound of Ar/$N_2$((Ar:$N_2$=60:15) respectively. When the thiness was over 1.64$\mu\textrm{m}$, good pit resistance could be obtained and its improvement was especially affected by perfect surfaceface. Typical TiN anodic polarzation curves of very unstable corrosion were observed by $Ti_xN$ film on the glass and perfect film of 3.28$\mu\textrm{m}$ thickness.

  • PDF

Numerical analysis and stability assessment of complex secondary toppling failures: A case study for the south pars special zone

  • Azarafza, Mohammad;Bonab, Masoud Hajialilue;Akgun, Haluk
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.481-495
    • /
    • 2021
  • This article assesses and estimates the progressive failure mechanism of complex pit-rest secondary toppling of slopes that are located within the vicinity of the Gas Flare Site of Refinery No. 4 in South Pars Special Zone (SPSZ), southwest Iran. The finite element numerical procedure based on the Shear Strength Reduction (SSR) technique has been employed for the stability analysis. In this regard, several step modelling stages that were conducted to evaluate the slope stability status revealed that the main instability was situated on the left-hand side (western) slope in the Flare Site. The toppling was related to the rock column-overburden system in relation to the overburden pressure on the rock columns which led to the progressive instability of the slope. This load transfer from the overburden has most probably led to the separation of the rock column and to its rotation downstream of the slope in the form of a complex pit-rest secondary toppling. According to the numerical modelling, it was determined that the Strength Reduction Factor (SRF) decreased substantially from 5.68 to less than 0.320 upon progressive failure. The estimated shear and normal stresses in the block columns ranged from 1.74 MPa to 8.46 MPa, and from 1.47 MPa to 16.8 MPa, respectively. In addition, the normal and shear displacements in the block columns ranged from 0.00609 m to 0.173 m and from 0.0109 m to 0.793 m, respectively.

Deformation characteristics and stability analysis of semi-covered deep excavations with existing buildings

  • Linfeng Wang;Xiaohan Zhou;Tao Chen;Xinrong Liu;Peng Liu;Shaoming Wu;Feng Chen;Bin Xu
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.87-102
    • /
    • 2023
  • The cover plate and the building loads often make the semi-covered deep excavations with existing buildings bearing asymmetric load, presenting different deformation characteristics with normal excavations, which is not absolutely clear in current studies. Based on a typical engineering, the building storeys, the basement storeys, the pile length, the existence of the cover plate (CP) and the depth of the diaphragm walls (DW) were selected as variables, and 44 groups of simulation were designed to study the influence of existing buildings and the semi-covered supporting system on the deformation of the excavations. The results showed that the maximum lateral displacement of DW, δhm, and the depth of δhm, Hm, are affected seriously by the building storeys and the basement storeys. Asymmetric structures and loading lead to certain lateral displacement of DW at the beginning of excavation, resulting in different relationships between δhm and excavation depth, H. The maximum surface settlement outside the pit, δvm, increases significantly and the location, dm, moves away from the pit with the building storeys increases. δvm has a quadratic correlation with H due to the existing buildings. CP and building load will affect the style of the lateral displacement curve of DW seriously in different aspects.