• 제목/요약/키워드: PIRT

검색결과 9건 처리시간 0.026초

화재모델링의 PIRT 적용성 검토

  • 지문학;김윤중;김형택
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2013년도 춘계학술대회 초록집
    • /
    • pp.42-43
    • /
    • 2013
  • 원전 방화지역의 화재리스크는 존모델 또는 필드모델을 사용하지만 화재 시나리오 또는 현상의 고찰 없이 사용되어온 측면이 있다. 한편 PIRT 기법은 전산코드의 적합성을 평가하고 최신기술과 입력자료의 타당성을 분석하여 우선순위 등급을 선정한다. 따라서 PIRT 기법을 화재모델링 분석에 적용할 경우 화재모델링 분석방법의 개선과 결과 값의 신뢰성을 높일 수 있는 기술로 활용할 수 있다.

  • PDF

Development of a Preliminary PIRT (Phenomena Identification and Ranking Table) of Thermal-Hydraulic Phenomena for SMART

  • Chung, Bub-Dong;Lee, Won-Jae;Kim, Hee-Cheol;Song, Jin-Ho;Sim, Suk-Ku
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.639-644
    • /
    • 1997
  • The work reported in this paper identifies the thermal-hydraulic phenomena that are expected to occur during a number of key transients in SMART(System-integrated Modular Advanced ReacTor) which is under development at KAERI. The result of this effort is based on the current design concept of SMART integral reactor. Although the design is still evolving, the preliminary phenomena Identification and Ranking Table(PIRT) has been developed based on the experts' knowledge and experience. The preliminary PIRT has been developed by consensus of KAERI expert panelists and AHP(Analytical Hierarchy Process). Preliminary PIRT developed in this paper is intended to be used to identify and integrate development areas of further experimental tests needed, thermal hydraulic models and correlations and code improvements for the safety analysis of the SMART.

  • PDF

Phenomena Identification and Ranking Table for the APR-1400 Main Steam Line Break

  • Song, J.H.;Chung, B.D.;Jeong, J.J.;Baek, W.P.;Lee, S.Y.;Choi, C.J.;Lee, C.S.;Lee, S.J.;Um, K.S.;Kim, H.G.;Bang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.388-402
    • /
    • 2004
  • A phenomena identification and ranking table(PIRT) was developed for a main steam line break (MSLB) event for the Advanced Power Reactor-1400 (APR-1400). The selectee event was a double-ended steam line break at full power, with the reactor coolant pump running. The developmental panel selected the fuel performance as the primary safety criterion during the ranking process. The plant design data, the results of the APR-1400 safety analysis, and the results of an additional best-estimate analysis by the MARS computer code were used in the development of the PIRT. The period of the transient was composed of three phases: pre-trip, rapid cool-down, and safety injection. Based on the relative importance to the primary evaluation criterion, the ranking of each system, component, and phenomenon/process was performed for each time phase. Finally, the knowledge-level for each important process for certain components was ranked in terms of existing knowledge. The PIRT can be used as a guide for planning cost-effective experimental programs and for code development efforts, especially for the quantification of those processes and/or phenomena that are highly important, but not well understood.

Parameter importance ranking for SBLOCA of CPR1000 with moment-independent sensitivity analysis

  • Xiong, Qingwen;Gou, Junli;Shan, Jianqiang
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2821-2835
    • /
    • 2020
  • The phenomenon identification and ranking table (PIRT) is an important basis in the nuclear power plant (NPP) thermal-hydraulic analysis. This study focuses on the importance ranking of the input parameters when lacking the PIRT, and the target scenario is the small break loss of coolant accident (SBLOCA) in a pressurized water reactor (PWR) CPR1000. A total of 54 input parameters which might have influence on the figure of merit (FOM) were identified, and the sensitivity measure of each input on the FOM was calculated through an optimized moment-independent global sensitivity analysis method. The importance ranking orders of the parameters were transformed into the Savage scores, and the parameters were categorized based on the Savage scores. A parameter importance ranking table for the SBLOCA scenario of the CPR1000 reactor was obtained, and the influences of some important parameters at different break sizes and different accident stages were analyzed.

영지의 액체배양에 의한 세포외 다당 생산의 동력학적 특성 (Batch Kinetics of Exo-polysaccharide Production by Submerged Cultivation of Ganoderma lucidum)

  • 이신영;이학수;박흥조
    • 한국균학회지
    • /
    • 제27권4호통권91호
    • /
    • pp.304-311
    • /
    • 1999
  • 영지버섯의 세포외 다당발효중 동력학적 특성을 기질(포도당, 전분), 기질농도$(1{\sim}7%)$ 및 계대배양(3회)의 함수로서 조사하였다. 영지버섯 균사체 증식은 logistic 모델이 Monod 모델 및 two- thirds power 모델과 비교하여 실험값에 잘 일치하였고, 기질 및 생성물은 Luedeking-Pirt 식에 의하여 잘 설명되었다. 또 다당 생성의 발효 기작은 증식연동형과 비증식 연동형이 함께 존재하는 혼합형이었으나 기질에 상관없이 비증식연동형 기작이 더 중요하였다. Glucose는 농도 증가에 따라 다당생성 및 기질소비의 기작이 증식연동형이 감소하고 비증식연동형이 증가하는 경향을 보였다. 그러나 starch를 사용하였을 경우는 glucose와는 달리, 기질소비의 증식연동형과 비증식연동형 기작이 모두 증가하여 높은 기질 이용성을 보였다. 아울러 starch배지에서는 glucose배지에서 보다 비증식속도의 증가와 계대배양시의 안정성을 보였다. 따라서 영지버섯의 배양시 starch배지는 비증식연동형에 의한 균체 생육 및 다당생성의 생합성 촉진에 의해 이들 생산성 및 계대배양시의 안정성을 증가시키는 것으로 생각되었다 최대의 균사체 생육 및 다당 생산은 각각 9.463 및 10.410 g/l로, 7% starch을 함유한 배지에서 $30^{\circ}C$로 7일간 진탕배양하였을 때 얻어졌다.

  • PDF

Computer-coupled Mass Sepctrometer를 이용한 세포증식과 기질소모의 연속적 On-line추정 (Continuous On-line Estimation of Cell Growth and Substrate Consumption Using a Computer-coupled Mass Spectrometer)

  • 남수완;김정희
    • KSBB Journal
    • /
    • 제4권2호
    • /
    • pp.118-122
    • /
    • 1989
  • Candida utilis를 model균주로 하여 세포증식과 기질소모를 on-line 간접측정하고자 개인용 컴퓨터(IBM PC-AT)와 interface된 quadrupole mass spectrometer로 발효 배기가스를 분석하였다. 5분마다 연속적으로 분석되는 질소, 산소, 이산화 탄소 및 수증기의 mole백분율(%)로부터 산소 소비속도(OUR)와 이산화 탄소 발생속도(CER)를 on-line으로 계산하였다. 미리 실험 결과치로부터 결정한 maintenance와 수율 상수들($k_1k_2 $ 값을 이용하여 세포농도와 기질인 포도당의 농도를 on-line으로 간접추정하였다. 간접추정된 값들은 실험적으로 측정한 세포농도 및 기질농도와 잘 일치함을 알 수 있었다.

  • PDF

ANALYSIS OF UNCERTAINTY QUANTIFICATION METHOD BY COMPARING MONTE-CARLO METHOD AND WILKS' FORMULA

  • Lee, Seung Wook;Chung, Bub Dong;Bang, Young-Seok;Bae, Sung Won
    • Nuclear Engineering and Technology
    • /
    • 제46권4호
    • /
    • pp.481-488
    • /
    • 2014
  • An analysis of the uncertainty quantification related to LBLOCA using the Monte-Carlo calculation has been performed and compared with the tolerance level determined by the Wilks' formula. The uncertainty range and distribution of each input parameter associated with the LOCA phenomena were determined based on previous PIRT results and documentation during the BEMUSE project. Calulations were conducted on 3,500 cases within a 2-week CPU time on a 14-PC cluster system. The Monte-Carlo exercise shows that the 95% upper limit PCT value can be obtained well, with a 95% confidence level using the Wilks' formula, although we have to endure a 5% risk of PCT under-prediction. The results also show that the statistical fluctuation of the limit value using Wilks' first-order is as large as the uncertainty value itself. It is therefore desirable to increase the order of the Wilks' formula to be higher than the second-order to estimate the reliable safety margin of the design features. It is also shown that, with its ever increasing computational capability, the Monte-Carlo method is accessible for a nuclear power plant safety analysis within a realistic time frame.

A Systems Engineering Approach to Ex-Vessel Cooling Strategy for APR1400 under Extended Station Blackout Conditions

  • Saja Rababah;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.32-45
    • /
    • 2023
  • Implementing Severe Accident Management (SAM) strategies is crucial for enhancing a nuclear power plant's resilience and safety against severe accidents conditions represented in the analysis of Station Blackout (SBO) event. Among these critical approaches, the In-Vessel Retention (IVR) through External Reactor Vessel Cooling (IVR-ERVC) strategy plays a key role in preventing vessel failure. This work is designed to evaluate the efficacy of the IVR strategy for a high-power density reactor APR1400. The APR1400's plant is represented and simulated under steady-state and transient conditions for a station blackout (SBO) accident scenario using the computer code, ASYST. The APR1400's thermal-hydraulic response is analyzed to assess its performance as it progresses toward a severe accident scenario during an extended SBO. The effectiveness of emergency operating procedures (EOPs) and severe accident management guidelines (SAMGs) are systematically examined to assess their ability to mitigate the accident. A group of associated key phenomena selected based on Phenomenon Identification and Ranking Tables (PIRT) and uncertain parameters are identified accordingly and then propagated within DAKOTA Uncertainty Quantification (UQ) framework until a statistically representative sample is obtained and hence determine the uncertainty bands of key system parameters. The Systems Engineering methodology is applied to direct the progression of work, ensuring systematic and efficient execution.

A SE Approach to Assess The Success Window of In-Vessel Retention Strategy

  • Udrescu, Alexandra-Maria;Diab, Aya
    • 시스템엔지니어링학술지
    • /
    • 제16권2호
    • /
    • pp.27-37
    • /
    • 2020
  • The Fukushima Daiichi accident in 2011 revealed some vulnerabilities of existing Nuclear Power Plants (NPPs) under extended Station Blackout (SBO) accident conditions. One of the key Severe Accident Management (SAM) strategies developed post Fukushima accident is the In-Vessel Retention (IVR) Strategy which aims to retain the structural integrity of the Reactor Pressure Vessel (RPV). RELAP/SCDAPSIM/MOD3.4 is selected to predict the thermal-hydraulic response of APR1400 undergoing an extended SBO. To assess the effectiveness of the IVR strategy, it is essential to quantify the underlying uncertainties. In this work, both the epistemic and aleatory uncertainties are considered to identify the success window of the IVR strategy. A set of in-vessel relevant phenomena were identified based on Phenomena Identification and Ranking Tables (PIRT) developed for severe accidents and propagated through the thermal-hydraulic model using Wilk's sampling method. For this work, a Systems Engineering (SE) approach is applied to facilitate the development process of assessing the reliability and robustness of the APR1400 IVR strategy. Specifically, the Kossiakoff SE method is used to identify the requirements, functions and physical architecture, and to develop a design verification and validation plan. Using the SE approach provides a systematic tool to successfully achieve the research goal by linking each requirement to a verification or validation test with predefined success criteria at each stage of the model development. The developed model identified the conditions necessary for successful implementation of the IVR strategy which maintains the vessel integrity and prevents a melt-through.