DOI QR코드

DOI QR Code

A SE Approach to Assess The Success Window of In-Vessel Retention Strategy

  • Udrescu, Alexandra-Maria (Nuclear Engineering Department, KEPCO International Nuclear Graduate School) ;
  • Diab, Aya (Nuclear Engineering Department, KEPCO International Nuclear Graduate School)
  • Received : 2020.09.14
  • Accepted : 2020.12.15
  • Published : 2020.12.31

Abstract

The Fukushima Daiichi accident in 2011 revealed some vulnerabilities of existing Nuclear Power Plants (NPPs) under extended Station Blackout (SBO) accident conditions. One of the key Severe Accident Management (SAM) strategies developed post Fukushima accident is the In-Vessel Retention (IVR) Strategy which aims to retain the structural integrity of the Reactor Pressure Vessel (RPV). RELAP/SCDAPSIM/MOD3.4 is selected to predict the thermal-hydraulic response of APR1400 undergoing an extended SBO. To assess the effectiveness of the IVR strategy, it is essential to quantify the underlying uncertainties. In this work, both the epistemic and aleatory uncertainties are considered to identify the success window of the IVR strategy. A set of in-vessel relevant phenomena were identified based on Phenomena Identification and Ranking Tables (PIRT) developed for severe accidents and propagated through the thermal-hydraulic model using Wilk's sampling method. For this work, a Systems Engineering (SE) approach is applied to facilitate the development process of assessing the reliability and robustness of the APR1400 IVR strategy. Specifically, the Kossiakoff SE method is used to identify the requirements, functions and physical architecture, and to develop a design verification and validation plan. Using the SE approach provides a systematic tool to successfully achieve the research goal by linking each requirement to a verification or validation test with predefined success criteria at each stage of the model development. The developed model identified the conditions necessary for successful implementation of the IVR strategy which maintains the vessel integrity and prevents a melt-through.

Keywords

References

  1. A. Kossiakoff, W. N. Sweet, S. J. Seymour, . M. Biemer., "SYSTEMS ENGINEERING PRINCIPLES AND PRACTICE", Second Edition (2011).
  2. S. M. Cho, S. J. Oh, A. Diab, "Analysis of the in-vessel phase of SAM strategy for a Korean 1000 MWe PWR", Journal of Nuclear Science and Technology (2018).
  3. S.-W. Lee, T. H. Hong, M.-R. Seo, Y.-S. Lee, H.-T. Kim, "Extended Station Blackout Coping Capabilities of APR1400", Research Article, Science and Technology of Nuclear Installations; Hindawi (2014).
  4. W. Ma, Y. Yuan, B. R. Sehgal, "In-Vessel Melt Retention of Pressurized Water Reactors: Historical Review and Future Research Needs", Engineering, 2(1), 103-111 (2016). https://doi.org/10.1016/j.eng.2016.01.019
  5. R. J. Park, S.-B. Kim, K. Y. Suh, J. Rempe, "Detailed Analysis of Late-Phase Core-Melt Progression for the Evaluation of In-Vessel Corium Retention", Nucl. Technol. 156 (3) (2006).
  6. D. Magallon, A. Mailliat, J.-M. Seiler, K. Atkhen, H. Sjovall, S. Dickinson, J. Jakab, L. Meyer, M. Buerger, K. Trambauer, L. Fickert, B. Raj Sehgal, Z. Hozer, J. Bagues, F. Martin-Fuentes, R. Zeyen, A. Annunziato, M. El-Shanawany, S. Guentay, C. Tinkler, B. Turland, L.E. Herranz Puebla, "European expert network for the reduction of uncertainties in severe accident safety issues (EURSAFE)", Nuclear Engineering and Design 235 (2005) 309-346. https://doi.org/10.1016/j.nucengdes.2004.08.042
  7. R. T. Tregoning, J. A. Apps, W. Chen, C. H. Delegard, R. Litman, D. D. MacDonald, "Phenomena Identification and Ranking Table Evaluation of Chemical Effects Associated with Generic Safety Issue 191", NUREG-1918 (2009).
  8. W. Klein-HeBling, M. Sonnenkalb, D. Jacquemain, B. Clement, E. Raimond, H. Dimmelmeier, G. Azarian, G. Ducros, C. Journeau, L. E. Herranz Puebla, A. Schummg, A. Miassoedov, I. Kljenak, G. Pascal, S. Bechta, S. Guntay, M.K. Koch, I. Ivanov, A. Auvinen, I. Lindholm, "Conclusions on Severe Accident Research Priorities. Annals of Nuclear Energy", Pergamon (2014).
  9. ISS, RELAP/SCDAPSIM/MOD3.x User Reference Manual, Volume I: "Advanced Fluid Systems Thermal Hydraulics Analysis", Volume II: "LWR Fuel Assembly, Core, and Plenum Structure Analysis Under Normal and Accident Conditions", Volume III: "Reactor Systems Modeling Options - Reactor Kinetics", 3585 Briar Creek Lane, Ammon Idaho 83406 (2019).
  10. A. Guba, I. Toth CEA, T. Mieusset, P. Bazin, A. de Crecy, S. Borisov, T. Skorek, H. Glaeser, J. Joucla, P. Probst, A. Ui, B. D. Chung, D. Y. Oh, R. Pernica, M. Kyncl, J. Macek, A. Manera, J. Freixa, A. Petruzzi, F. D'Auria, A. Del Nevo, F. D'Auria, M. Perez, F. Reventos, L. Batet, "Uncertainty and Sensitivity Analysis of a LB-LOCA in ZION Nuclear Power Plant", : BEMUSE Phase V Report, BERMUSE Programme, NEA/CSNI/R(2009)13.
  11. Systems Modeling Options - Reactor Kinetics", ISS, 3585 Briar Creek Lane, Ammon Idaho 83406 (2019).
  12. The SCDAPSIM/RELAP5 Development Team, SCDAPSIM/RELAP5/MOD3.2 Code Manual, Volume II: "Damage Progression Model Theory", Idaho National Engineering and Environmental Laboratory, Lockheed Martin Idaho Technologies, Idaho Falls, Idaho 83415, NUREG/CR-6150, INEL-96 /0422, Revision 1 (1997).
  13. SCDAPSIM/RELAP5/MOD3.3 Code Manual, "Modeling of Reactor Core and Vessel Behavior During Severe Accidents", Idaho National Engineering and Environmental Laboratory, U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, DC 20555-0001.
  14. APR1400 Design Control Document Tier 2 Chapter 19 Probabilistic Risk Assessment And Severe Accident Evaluation, Revision 3 APR1400-K-X-FS-14002-NP (2018).
  15. J. R. Tavares de Sousa, A. Diab, "A Systems Engineering Approach for Uncertainty Analysis of a Station Blackout Scenario", Journal of KOSSE 2019.
  16. I. F. Awad, J. C. Jung, "Development of Simplified DNBR Calculation Algorithm using Model-Based Systems Engineering Methodology", Journal of KOSSE 2018.
  17. A. Goronovski, W. Villanueva, P. Kudinov and T. Chi-Thanh, "Effect of Corium Non-Homogeneity on Nordic BWR Vessel Failure Mode and Timing," in ICAPP-2015, 2015.
  18. S. Yakush, N. Lubchenko and P. Kudinov, "Risk and uncertainty quantification in debris bed coolability," in NURETH 15, 2013.
  19. D. Grishchenko, S. Basso and P. Kudinov, "Development of TEXAS-V code surrogate model for assessment of steam explosion impact in Nordic BWR," in NURETH 16, 2015.
  20. S. Yakush, P. Kudinov, W. Villanueva and S. Basso, "In-Vessel debris bed coolability and its influence on the vessel failure," in NURETH-15, Pisa, 2013.
  21. D. Grishchenko, S. Basso and P. Kudinov, "Development of a surrogate model for analysis of ex-vessel steam explosion in Nordic type BWRs," Nuclear Engineering and Design, vol. 310, pp. 311-327, 2016. https://doi.org/10.1016/j.nucengdes.2016.10.014