• 제목/요약/키워드: PIN Code

검색결과 97건 처리시간 0.024초

POINTWISE CROSS-SECTION-BASED ON-THE-FLY RESONANCE INTERFERENCE TREATMENT WITH INTERMEDIATE RESONANCE APPROXIMATION

  • BACHA, MEER;JOO, HAN GYU
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.791-803
    • /
    • 2015
  • The effective cross sections (XSs) in the direct whole core calculation code nTRACER are evaluated by the equivalence theory-based resonance-integral-table method using the WIMS-based library as an alternative to the subgroup method. The background XSs, as well as the Dancoff correction factors, were evaluated by the enhanced neutron-current method. A method, with pointwise microscopic XSs on a union-lethargy grid, was used for the generation of resonance-interference factors (RIFs) for mixed resonant absorbers. This method was modified by the intermediate-resonance approximation by replacing the potential XSs for the non-absorbing moderator nuclides with the background XSs and neglecting the resonance-elastic scattering. The resonance-escape probability was implemented to incorporate the energy self-shielding effect in the spectrum. The XSs were improved using the proposed method as compared to the narrow resonance infinite massbased method. The RIFs were improved by 1% in $^{235}U$, 7% in $^{239}Pu$, and >2% in $^{240}Pu$. To account for thermal feedback, a new feature was incorporated with the interpolation of pre-generated RIFs at the multigroup level and the results compared with the conventional resonance-interference model. This method provided adequate results in terms of XSs and k-eff. The results were verified first by the comparison of RIFs with the exact RIFs, and then comparing the XSs with the McCARD calculations for the homogeneous configurations, with burned fuel containing a mixture of resonant nuclides at different burnups and temperatures. The RIFs and XSs for the mixture showed good agreement, which verified the accuracy of the RIF evaluation using the proposed method. The method was then verified by comparing the XSs for the virtual environment for reactor applicationbenchmark pin-cell problem, as well as the heterogeneous pin cell containing burned fuel with McCARD. The method works well for homogeneous, as well as heterogeneous configurations.

Jacobian-free Newton Krylov two-node coarse mesh finite difference based on nodal expansion method

  • Zhou, Xiafeng
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3059-3072
    • /
    • 2022
  • A Jacobian-Free Newton Krylov Two-Nodal Coarse Mesh Finite Difference algorithm based on Nodal Expansion Method (NEM_TNCMFD_JFNK) is successfully developed and proposed to solve the three-dimensional (3D) and multi-group reactor physics models. In the NEM_TNCMFD_JFNK method, the efficient JFNK method with the Modified Incomplete LU (MILU) preconditioner is integrated and applied into the discrete systems of the NEM-based two-node CMFD method by constructing the residual functions of only the nodal average fluxes and the eigenvalue. All the nonlinear corrective nodal coupling coefficients are updated on the basis of two-nodal NEM formulation including the discontinuity factor in every few newton steps. All the expansion coefficients and interface currents of the two-node NEM need not be chosen as the solution variables to evaluate the residual functions of the NEM_TNCMFD_JFNK method, therefore, the NEM_TNCMFD_JFNK method can greatly reduce the number of solution variables and the computational cost compared with the JFNK based on the conventional NEM. Finally the NEM_TNCMFD_JFNK code is developed and then analyzed by simulating the representative PWR MOX/UO2 core benchmark, the popular NEACRP 3D core benchmark and the complicated full-core pin-by-pin homogenous core model. Numerical solutions show that the proposed NEM_TNCMFD_JFNK method with the MILU preconditioner has the good numerical accuracy and can obtain higher computational efficiency than the NEM-based two-node CMFD algorithm with the power method in the outer iteration and the Krylov method using the MILU preconditioner in the inner iteration, which indicates the NEM_TNCMFD_JFNK method can serve as a potential and efficient numerical tool for reactor neutron diffusion analysis module in the JFNK-based multiphysics coupling application.

제올라이트 굵은골재 대체율에 따른 조경포장 콘크리트의 흡수 및 강도 특성 (Absorption and Strength Properties of Landscape Paving Concrete According to Zeolite Coarse Aggregate Replacement Rate)

  • 나옥빈;이기열
    • 한국산학기술학회논문지
    • /
    • 제22권4호
    • /
    • pp.131-139
    • /
    • 2021
  • 이 논문은 흡수율이 높은 제올라이트를 일반 굵은골재의 대체재로 보도용 조경포장 콘크리트에 적용하기 위한 기초 연구로서, 제올라이트 굵은골재 대체율에 따른 포장 콘크리트의 흡수성능과 강도 특성을 파악하였다. 제올라이트 굵은골재의 흡수율은 약 14%로서 일반 굵은골재와 비교하여 흡수성능이 2.5배 증가하였다. 그리고, 제올라이트 굵은골재를 포장 콘크리트에 혼입하면 굵은골재 대체율에 따라 흡수율이 증가하고, 최대 대체율 50%에서 5.2%로 일반 포장 콘크리트와 비교하여 약 42% 증가하였다. 제올라이트 혼입 포장 콘크리트의 압축강도는 대체율 20%까지 증가한 후 감소하였지만 건설기준코드에서 규정하는 압축강도 기준은 모두 충족하였다. 휨강도는 대체율 10%까지 기준강도를 만족하였으나 대체율에 따라 강도가 감소하였으며, 포장 콘크리트의 균열저항성에 영향을 주는 쪼갬인장강도는 대체율 20%까지 일반 포장 콘크리트의 강도보다 크게 나타났다. 제올라이트 혼입 포장 콘크리트의 흡수성능과 강도 특성에 대한 연구결과로부터 제올라이트 굵은골재를 일반 굵은골재의 대체재로 적용이 가능함을 확인하였다.

Verification of a novel fuel burnup algorithm in the RAPID code system based on Serpent-2 simulation of the TRIGA Mark II research reactor

  • Anze Pungercic;Valerio Mascolino ;Alireza Haghighat;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3732-3753
    • /
    • 2023
  • The Real-time Analysis for Particle-transport and In-situ Detection (RAPID) Code System, developed based on the Multi-stage Response-function Transport (MRT) methodology, enables real-time simulation of nuclear systems such as reactor cores, spent nuclear fuel pools and casks, and sub-critical facilities. This paper presents the application of a novel fission matrix-based burnup methodology to the well-characterized JSI TRIGA Mark II research reactor. This methodology allows for calculation of nuclear fuel depletion by combination and interpolation of RAPID's burnup dependent fission matrix (FM) coefficients to take into account core changes due to burnup. The methodology is compared to experimentally validated Serpent-2 Monte Carlo depletion calculations. The results show that the burnup methodology for RAPID (bRAPID) implemented into RAPID is capable of accurately calculating the keff burnup changes of the reactor core as the average discrepancies throughout the whole burnup interval are 37 pcm. Furthermore, capability of accurately describing 3D fission source distribution changes with burnup is demonstrated by having less than 1% relative discrepancies compared to Serpent-2. Good agreement is observed for axially and pin-wise dependent fuel burnup and nuclear fuel nuclide composition as a function of burnup. It is demonstrated that bRAPID accurately describes burnup in areas with high gradients of neutron flux (e.g. vicinity of control rods). Observed discrepancies for some isotopes are explained by analyzing the neutron spectrum. This paper presents a powerful depletion calculation tool that is capable of characterization of spent nuclear fuel on the fly while the reactor is in operation.

FPGA를 이용한 시퀀스 로직 제어용 고속 프로세서 설계 (The Design of High Speed Processor for a Sequence Logic Control using FPGA)

  • 양오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권12호
    • /
    • pp.1554-1563
    • /
    • 1999
  • This paper presents the design of high speed processor for a sequence logic control using field programmable gate array(FPGA). The sequence logic controller is widely used for automating a variety of industrial plants. The FPGA designed by VHDL consists of program and data memory interface block, input and output block, instruction fetch and decoder block, register and ALU block, program counter block, debug control block respectively. Dedicated clock inputs in the FPGA were used for high speed execution, and also the program memory was separated from the data memory for high speed execution of the sequence instructions at 40 MHz clock. Therefore it was possible that sequence instructions could be operated at the same time during the instruction fetch cycle. In order to reduce the instruction decoding time and the interface time of the data memory interface, an instruction code size was implemented by 16 bits or 32 bits respectively. And the real time debug operation was implemented for easy debugging the designed processor. This FPGA was synthesized by pASIC 2 SpDE and Synplify-Lite synthesis tool of Quick Logic company. The final simulation for worst cases was successfully performed under a Verilog HDL simulation environment. And the FPGA programmed for an 84 pin PLCC package was applied to sequence control system with inputs and outputs of 256 points. The designed processor for the sequence logic was compared with the control system using the DSP(TM320C32-40MHz) and conventional PLC system. The designed processor for the sequence logic showed good performance.

  • PDF

온간 하이드로포밍에 관한 유한요소해석 및 실험적 검증 (Finite Element Analysis and Experimental Confirmation of Warm Hydroforming Process)

  • 김봉준;박광수;최경호;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.277-280
    • /
    • 2006
  • The hydroformability of aluminum alloy sheets at elevated temperatures have been investigated in this study. It is necessary to analyze the variations of the mechanical properties that depend on the forming temperature and the heat conduction during warm hydroforming. Therefore, in this study a coupled simulation of plastic deformation and temperature distribution in the warm hydroforming process is performed and compared with experimental data. The multi-purpose code DEFORM-2D can handle this type of calculations but it takes high computation time if contact heat transfer between die, tube and pressure medium occurs. Experiments were conducted by high temperature tribometer(pin-on-disk) allowing measuring the friction coefficients of the aluminum alloys at several temperatures and these results are applied to the coupled simulation by which the optimal process parameters such as internal pressure and preset temperature on hydroformability can be determined. The comparison of the FE analysis with the experimental results has shown that hydroformability given by bulge height, and temperature distribution of the tube specimen make a little difference with the FE results but the trend predicted by simulation agrees well with experiments.

  • PDF

외부 포스트텐션 콘크리트 보의 전단강도 (Shear Strength of Externally Post-Tensioned Concrete Beams)

  • 이수헌;강현구;신경재
    • 한국공간구조학회논문집
    • /
    • 제15권1호
    • /
    • pp.57-64
    • /
    • 2015
  • This paper shows the test results of continuous reinforced concrete beams with external post-tensioning rods. Six three-span beams were prepared and tested to fail. Three beams were designed to have flexure-dominating behavior and the others to have shear-critical behavior. In each group, one beam without external post-tensioning rods was designated as a control beam and two beams had the external post-tensioning rods of 18 mm or 22 mm diameter. External post-tensioning rods were installed within an interior span of 6000 mm. They show V-shaped configuration because two anchorages were located at the top of interior supports and a saddle pin at mid-span was installed at the bottom of the beam. Test results show that the load and shear capacities of strengthened beams were increased when compared with the control beam. Additionally, the measured shear strength was compared with the strength predicted by ACI 318-11 code equations. The detailed ACI 318-11 equation predicted the measured shear strength and failure location of the continuous beam reasonably well.

다차원 노심열수력 현상이 소듐고속로 고유안전성에 미치는 영향 (Impact of Multi-dimensional Core Thermal-hydraulics on Inherent Safety of Sodium-Cooled Fast Reactor)

  • 권영민;정해용;하귀석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3175-3180
    • /
    • 2008
  • A metal-fueled pool-type liquid metal fast reactor (LMFR) provides large margins to sodium boiling and fuel damage under accident conditions. The favorable passive safety results are obtained by both a reactivity feedback mechanism in the core and a passive decay heat removal system. Among the various reactivity feedbacks, the ones by a thermal expansion of a radial dimension of the core and by the control rod drivelines are strongly dependent on the flow conditions in the core and the hot pool, respectively. The effects of multidimensional thermal hydraulic characteristics on these reactivity feedbacks are investigated by the system-wide safety analysis code SSC-K with advanced thermal hydraulics models. Particularly a detailed three dimensional thermal hydraulics reactor core model is integrated into SSC-K for use in a whole system analysis of the passive safety aspects of LMR designs. The model provides fuel and cladding temperatures for every fuel pin in a reactor and coolant temperatures for every coolant sub-channel in the reactor.

  • PDF

Resonance Elastic Scattering and Interference Effects Treatments in Subgroup Method

  • Li, Yunzhao;He, Qingming;Cao, Liangzhi;Wu, Hongchun;Zu, Tiejun
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.339-350
    • /
    • 2016
  • Based on the resonance integral (RI) tables produced by the NJOY program, the conventional subgroup method usually ignores both the resonance elastic scattering and the resonance interference effects. In this paper, on one hand, to correct the resonance elastic scattering effect, RI tables are regenerated by using the Monte Carlo code, OpenMC, which employs the Doppler broadening rejection correction method for the resonance elastic scattering. On the other hand, a fast resonance interference factor method is proposed to efficiently handle the resonance interference effect. Encouraging conclusions have been indicated by the numerical results. (1) For a hot full power pressurized water reactor fuel pin-cell, an error of about +200 percent mille could be introduced by neglecting the resonance elastic scattering effect. By contrast, the approach employed in this paper can eliminate the error. (2) The fast resonance interference factor method possesses higher precision and higher efficiency than the conventional Bondarenko iteration method. Correspondingly, if the fast resonance interference factor method proposed in this paper is employed, the $k_{inf}$ can be improved by ~100 percent mille with a speedup of about 4.56.

국부가압 다이캐스팅 공정에서 3차원 유동 및 응고해석을 통한 자동차 변속기 Gear Housing의 주조방안 설계 최적화 (Optimization of Casting Design for Automobile Transmission Gear Housing by 3D Filling and Solidification Simulation in Local Squeeze Diecasting Process)

  • 박진영;김억수;박용호;박익민
    • 한국재료학회지
    • /
    • 제16권11호
    • /
    • pp.668-675
    • /
    • 2006
  • In the partial squeeze casting process, the filling behavior of liquid metal and solidification pattern in thick area have significant influence on the quality of casting products and die life. For the optimal casting design of automobile transmission gear housing, various analyses were performed in this study by using computer simulation code, MAGMAsoft and the simulation results were compared and analyzed with experimental results. By air pressure criteria, internal porosities caused by air entrap during the mold filling were predicted and reduced remarkably by modification of gating system. Also, optimal squeeze-time lag to apply partial squeeze pin in thick area was calculated and the castings was free from shrinkage defects with the result of solidification analysis. Consequently, casting design for automobile transmission gear housing was optimized and approved by Computer Tomography.