• 제목/요약/키워드: PID speed control

검색결과 433건 처리시간 0.025초

Intelligent Position Control of a Vertical Rotating Single Arm Robot Using BLDC Servo Drive

  • Manikandan, R.;Arulmozhiyal, R.
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.205-216
    • /
    • 2016
  • The manufacturing sector resorts to automation to increase production and homogeneity of products during mass production, without increasing scarce, expensive, and unreliable manpower. Automation in the form of multiple robotic arms that handle materials in all directions in different stages of the process is proven to be the best way to increase production. This paper thoroughly investigates robotic single-arm movements, that is, 360° vertical rotation, with the help of a brushless DC motor, controlled by a fuzzy proportional-integral-derivative (PID) controller. This paper also deals with the design and performance of the fuzzy-based PID controller used to control vertical movement against the limited scope of conventional PID feedback controller and how the torque of the arm is affected by the fuzzy PID controller in the four quadrants to ensure constant speed and accident-free operation despite the influence of gravitational force. The design was simulated through MATLAB/SIMULINK and integrated with dSPACE DS1104-based hardware to verify the dynamic behaviors of the arm.

$H_{\infty}$ 제어에 의한 박용디젤기관의 속도제어에 관한 연구 (A Study on Marine Diesel Engine Speed Control by Application of H Control)

  • 양주호
    • 수산해양기술연구
    • /
    • 제30권4호
    • /
    • pp.320-328
    • /
    • 1994
  • In 1980 s to 1990 s the marine propulsion diesel engines have been developed into lower speed and longer stroke for the enegy saving (small S.F.O.C). As these new trends the conventional mechanical-hydraulic governors were not adapted to the new requirements and the digital governors have been adopted in the marine use. The digital governors usually use the control algorithms such as the PID control, optimal control, adaptive control and etc. While the engine has delay time and parameter variations these control algorithms have difficulty in considering the stability and the robustness for the model uncertainty. In this study, the $H_{\infty}$ controller design method are applied in order to design the feedback controller K(s) to the speed control of the low speed marine diesel engine, and the two-degree-of-freedom control system is constituted with $H_{\infty}$controller. By comparison of responses of the two-degree-of-freedom control system under the delay time and parameter variations is confirmed.

  • PDF

위상제어와 주기 제어를 이용한 단상유도기의 속도 제어 (Speed control of single-phase induction motor using phase control and integral cycle control)

  • 김철진;이관용;조영래;최철용;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.190-192
    • /
    • 2003
  • Single phase induction motor is used widely in various electronic appliances by advantage that is simple structure and a low-cost. As high starting torque characteristic is mostly used capacitor run single phase induction motor. In this paper, it is applied that speed controller of Capacitor run single phase induction motor of digital way used general microprocessor, and phase control method used average voltage. Torque get non-linearity to domain of low speed. Unstable domain of low speed is applied of integral cycle control. so it is wide that Speed control domain. Also, PID controller is used to improve characteristic of fast response. The validity of proposed method is verified from simulation and experiment result

  • PDF

A Study on Improvement of Automatic Vehicle´s Comfortability using Fuzzy Controller

  • Il, Bae-Jong;Park, H.S.;Park, Yeon-Wook;Yeun, Hwnag-Yeong;Ha M.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.128.4-128
    • /
    • 2001
  • Based on fuzzy logic algorithm this paper constructed fuzzy logic controller for automated vehicles. For passenger´s convenience especially comfortability controller need to reduce the frequency of input variable´s changing. So we established membership functions for comfortability as well as speed following. It made possible to control comfortability directly. To demonstration the efficiency of fuzzy logic controller, we carried out simulation with a automobile´s transfer function. First, we designed the PID controller by using Ziegler-Nichols tunning method. Second, we calculated time response for each controller, then we compared the speed patterns of fuzzy controlled system and PID controlled system. Also we compared the difference of input variable ...

  • PDF

퍼지알고리즘에 의한 유도전동기의 고정도 속도제어에 관한 연구 (A study on the Speed Controller with High Accuracy of an Induction Motor by Fuzzy Algorithms)

  • 송호신;이오걸;이준탁;우정인
    • 한국지능시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.45-57
    • /
    • 1993
  • 본 논문에서는 최근 많은 관심이 되고 있는 퍼지제어 알고리즘을 이용하여 유도전동기의 견실한 속도제어기를 설계 한다. 목표치 도달시간과 정상상태 편차를 줄이기 위해 최적 스케일 펙터 선정법을 제시한다. 이를 시뮬레이션을 통하여 종래의 PID제어와 제안된 퍼지 제어를 비교 고찰하므로서 그 유용성을 입증하고자 한다.

  • PDF

전자 유압식 리그형 CVT의 변속비 퍼지제어 (Fuzzy Control of Speed Ratio for Electro-Hydraulic Rig Type CVT)

  • 김성호;김광원;김현수;은탁
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.63-73
    • /
    • 1993
  • In this paper, fuzzy control algorithm for the speed ratio control of the electro-hydraulic rig type continuously variable transmission(CVT) was proposed and the CVT performance tests were carried out for the optimal operation of the engine simulator. The experimental results for the constant throttle and the acceleration modes showed that the engine can be run on the optimum operating line, representing the power and economy mode, by the fuzzy control of the CVT speed ratio. Comparing the PID control with the fuzzy control, it was found that the fuzzy control showed better performance with the faster rising time and smaller steady state error. The result of this study can be used as basic design materials for developing the transmission control unit of the CVT.

  • PDF

풍력 발전시스템 피치 제어에 관한 연구 (Pitch Control for Wind Turbine Generator System)

  • 박종혁;노태수;문정희;김지언
    • 한국항공우주학회지
    • /
    • 제34권12호
    • /
    • pp.25-34
    • /
    • 2006
  • 본 논문에서는 풍력 발전시스템의 피치 제어 알고리즘 설계 기법을 검토하고 비선형 시뮬레이션을 수행한 결과를 제시한다. 풍력 발전시스템을 다몸체 시스템으로 간주하고 로터 블레이드에 작용하는 공력 및 토크 계산을 위해 블레이드 요소 및 모멘텀 이론을 근거로 공력 모델링을 수행하였다. 제어기 설계를 위해, 풍력 발전시스템은 서로 상대적으로 구속한 체 운동하는 1 자유도 시스템으로 가정하여 선형 방정식을 수립하고, 로터 회전속도를 제어하기 위해 PID 제어기를 설계하였다. FORTRAN 언어를 기반으로 작성된 비선형 시뮬레이터 WINSIM을 이용하여 다양한 풍속 시나리오와 운전 방식에서 제어기의 성능을 시뮬레이션을 통해 확인하였다.

A Feasible Approach for the Unified PID Position Controller Including Zero-Phase Error Tracking Performance for Direct Drive Rotation Motor

  • Kim, Joohn-Sheok
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.74-84
    • /
    • 2009
  • The design and implementation of a high performance PID (Proportional Integral & Differential) style controller with zero-phase error tracking property is considered in this article. Unlike a ball screw driven system, the controller in a direct drive system should provide a high level of tracking performance while avoiding the problems due to the absence of the gear system. The stiff mechanical element in a direct drive system allows high precise positioning capability, but relatively high tracking ability with minimal position error is required. In this work, a feasible position controller named 'Unified PID controller' is presented. It will be shown that the function of the closed position loop can be designed into unity gain system in continuous time domain to provide minimal position error. The focus of this work is in two areas. First, easy gain tunable PID position controller without speed control loop is designed in order to construct feasible high performance drive system. Second, a simple but powerful zero phase error tracking strategy using the pre-designed function of the main control loop is presented for minimal tracking error in all operating conditions. Experimental results with a s-curve based position pattern commonly used in industrial field demonstrate the feasibility and effective performance of the approach.

비선형 슬라이딩 면을 이용한 온수난방 순환펌프 시스템의 온도 제어 (Temperature control for a hot water heating circulating pump system using a nonlinear sliding surface)

  • 안병천;장효환
    • 제어로봇시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.162-168
    • /
    • 1997
  • Digital variable structure controller(DVSC) is implemented to control the temperature for the hot water heating circulating pump control system. For the DVSC, a control algorithm is suggested, which using a nonlinear sliding surface and a PID sliding surface outside and inside of steady state error boundary layer, respectively. Smith predictor algorithm is used for the compensation of long dead time. The DVSC of the suggested algorithm yields improved control performance compared with the one of existing algorithm. The system responses with the suggested DVSC shows good responses without overshoot and steady state error inspite of heating load change. By decreasing sampling time, dead time and rise time are increasing, and system output noise by flow dynamics is amplified.

  • PDF

절자 비례 밸브를 갖는 펌프의 퍼지-동력제어기 설계 (Design of Fuzzy-Power Controller for a Pump with Electric Proportional Valve)

  • 전순용
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.441-447
    • /
    • 1998
  • Motivated by a recent work, a fuzzy-power-controller(FPC) is designed for the relieving-horsepower control of output variable pump with electrical proportional valve and actually implemented on the industrial excavator. In order to calculate the output power of pump with input of FPC, a linear discrete time model of load system to pump is obtained and the result is applied to control the engine-pump coupled system by software without pressure and flow sensor. The FPC controls the engine and pump coupled system by relieving horsepower control according to the change of load and the running conditions in relieving horsepower control are selected by fuzzy inference engine. A case study is peformed through the construction of the control device and installation on the excavator. It shows that the relieving-horsepower control system with the FPC, as suggested in this paper, is superior to the conventional PID controllers. And also, the excavator, with the FPC, shows that the power-loss of the coupled system is reduced and the running speed of the hydraulic actuator is enhanced.

  • PDF