• Title/Summary/Keyword: PID position control

Search Result 356, Processing Time 0.027 seconds

A study on the Robust Control Cain Selection Scheme of a High-Speed/High-Accuracy position Control System using Taguchi Method (다꾸지 방법을 이용한 고속/정밀 위치제어시스템의 강인한 제어게인 선정에 관한 연구)

  • 신호준;채호철;윤석찬;장진희;한창수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.521-527
    • /
    • 2002
  • This paper presents a dynamic modeling and a robust PID controller design process for the wire bonder head assembly. For the modeling elements, the system is divided into electrical system, magnetic system, and mechanical system. Each system is modeled by using the bond graph method. The PID controller is used for high speed/high accuracy position control of the wire bonder assembly. The Taguchi method is used to evaluate the more robust PID gain combinations than conventional one. This study makes use of an L18 array with three parameters varied on three levels. Computer simulations and experimental results show that the designed PID controller provides more improved signal to noise ratio and reduced sensitivity than the conventional PID controller.

  • PDF

A Position Control of EHA Systems using Adaptive PID Sliding Mode Control Scheme (적응PID 슬라이딩 모드 제어기법을 적용한 EHA 시스템의 위치제어)

  • Lee, Ji-Min;Park, Sung-Hwan;Park, Min-Gyu;Kim, Jong-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.120-130
    • /
    • 2013
  • An adaptive PID sliding mode controller is proposed for the position control of electro-hydrostatic actuator(EHA) systems with system uncertainties and saturation in the motor. An EHA prototype is developed and system modeling and parameter identification are executed. Then, adaptive PID sliding mode controller and optimal anti-windup PID controller are designed and the performance and robustness of the two control systems are compared by experiment. It was found that the adaptive PID sliding mode control system has better performance and is more robust to system uncertainties than the optimal anti-windup PID control system.

A Simulation Study of Position Control Performance of a Shape Memory Alloy-Actuated Flow Control Valve (형상기업합금을 이용한 유량제어밸브의 위치제어 적용 시뮬레이션)

  • Choi, Su-Hyun;Lee, Han-Suk;Kuk, Kum-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.79-87
    • /
    • 1999
  • In this study, a new type of flow control valve which is SMA actuated flow control valve is presented. The flow control valve is actuated by a small motion of shape memory alloy. The performance of this valve as a position control component is analyzed by computer simulation. A variable structure control technique is applied for the position control by the flow control valve. The position control performance of the valve is evaluated on the step responses of a PID control by a electrohydraulic servo valve. For the simulation study, first, the mathematical model of a hydraulic system, which is consisted of the flow control valve and a hydraulic cylinder, is formulated. This mathematical model and the designed variable structure control algorithm are then combined by the MATLAB software. The same sequence of work is carried out for the PID position control system with a electrohydraulic servo valve. The simulation results show the validity of the new type of flow control valve as a variable position control component.

  • PDF

Fuzzy PID Control by Grouping of Membership Functions of Fuzzy Antecedent Variables with Neutrosophic Set Approach and 3-D Position Tracking Control of a Robot Manipulator

  • Can, Mehmet Serhat;Ozguven, Omerul Faruk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.969-980
    • /
    • 2018
  • This paper aims to design of the neutrosophic fuzzy-PID controller and it has been compared with the conventional fuzzy-PID controller for position tracking control in terms of robustness. In the neutrosophic fuzzy-PID controller, error (e) and change of error (ce) were assessed separately on two fuzzy inference systems (FISs). In this study, the designed method is different from the conventional fuzzy logic controller design, membership degrees of antecedent variables were determined by using the T(true), I(indeterminacy), and F(false) membership functions. These membership functions are grouped on the universe of discourse with the neutrosophic set approach. These methods were tested on three-dimensional (3-D) position-tracking control application of a spherical robot manipulator in the MATLAB Simulink. In all tests, reference trajectory was defined for movements of all axes of the robot manipulator. According to the results of the study, when the moment of inertia of the rotor is changed, less overshoot ratio and less oscillation are obtained in the neutrosophic fuzzy-PID controller. Thus, our suggested method is seen to be more robust than the fuzzy-PID controllers.

Two-Degree-of-Freedom PID controller with Neural network for position control (위치제어를 위한 신경망 2 자유도 PID 제어기)

  • 이정민;하홍곤
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.193-196
    • /
    • 2000
  • ln this paper, we consider to apply of 2-DOF (Degree of Freedom) PID controller at D.C servo motor system. Many control system use I-PD, PIB control system. but the position control system have difficulty in controling variable load and changing parameter We propose neural network 2-DOF PID control system having feature for removal disturbrances and tracking function in the target value point.

  • PDF

The Position Control Of Expended PID Controller Using Double-Layers Neural Network In DC Servo System (DC서보계에서 2중신경망을 이용한 확대 PID 제어기의 위치제어)

  • 이정민;하홍곤
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.105-108
    • /
    • 2000
  • Many control techniques have been proposed in order to improve the control performance of discrete-time domain control system. In the position control system using a DC servo motor as a driver, the response-characteristic of system is controlled by the PID controller. In the PID control system, the transient response characteristic is more increased and settling time gets longer if gains of PID controller are unsuitable. In this paper, therefore, a expended PID control system is constructed by inserting a pre-compensator at output terminal of PID controller. It is implemented by using the double layers neural network. Form the results of computer simulation in the proposed control algorithm, its usefulness is verified.

  • PDF

High Precision Position Synchronous Control in a Multi-Axes Driving System (다축 구동 시스템의 정밀 위치동기 제어(I))

  • Byun, Jung-Hoan;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.115-121
    • /
    • 1996
  • Multi-axes driving system is more suitable for FMS(Flexible Manufacturing System) compared with a conventional single-azis driving system. It has some merits such as flexibility in operation, improvement of net working rate, maintenance free because of no gear train, etc. However, studies on position synchronous control for high precision in the multi-axes driving system are not enough. In this paper, a new method of position synchronous control is suggested in order to apply to the multi- axes driving system. The proposed method is structured very simply using speed and position controller based on PID control law. Especially, the position controller is designed to keep position error to minimize by controlling either speed of two motors. The effectiveness of the proposed method is successfully confirmed through several experiments.

  • PDF

Autotuning fuzzy PID controller for position control of DC servo motor

  • Park, Jong-Kun;Lim, Young-Cheol;Cho, Kyeng-Young;Ryoo, Young-Jae;Oh, Dong-Hwan;Wi, Seog-O;Lee, Hong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.257-262
    • /
    • 1994
  • This paper describes an autotuning fuzzy PID controller for a position control of DC serve motor. Because ZNM(Ziegler-Nichols Method) with relay feedback has the difficulty in re-tuning the PID parameters and adaptive method has complex algorithm, a new method to overcome those problems is required. The proposed scheme determines the initial PID gains by using ZNM with relay feedback, and then re-tunes the optimal PID parameters by using fuzzy expert system whenever control conditions are changed. To show the validity of the proposed method, a position control of DC servo motor is illustrated by computer simulation and is experimented by a designed controller.

  • PDF

New Unified PID Position Control Algorithm for High Performance Position Control Loop Using Linear Machine Drive (선형 전동기의 고성능 위치 제어를 위한 새로운 통합 PID 제어기에 관한 연구)

  • Lee, You-In;Kim, Joohn-Sheok;Kim, Yong-Yil
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.389-391
    • /
    • 1999
  • Recently, the application of the linear machine for industrial field is remarkable increased, especially for the gantry machine. machine tool system and CNC. In these application fields. high precise position control performance is essentially required in both the steady and transient state. And linear machine is necessary for high-precision processing and manipulation when relatively high forces are involved. This paper presents the new unified PID position control algorithm which have rare sensitivity to disturbance, which the gain adjusting process is simple. Also this paper investigates the use of the New Unified PID control to design for high stiffness. Through the experimental results, it is shown that the proposed algorithm has high dynamic characteristic for the linear machine application field nevertheless of its simple structure.

  • PDF

Design of 2-DOF PID control system by a Neural network (신경망에 의한 2 자유도 PID 제어기의 설계)

  • 허진영;김홍렬;하홍곤;고태언
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.262-266
    • /
    • 1999
  • In this paper, we consider to apply of 2-DOF (Degree of Freedom) PID controller at D.C servo motor system. Many control system use I-PD, PID control system, but the position control system have difficulty in controling variable load and changing parameter. We propose neural network 2-DOF PID control system having feature for removal disturbrances and tracking function in the target value point. The back propagation algorithm of neural network used for tuning the 2-DOF parameter ($\alpha$, $\beta$, ${\gamma}$, η). We investigate the 2-DOF PID control system in the position control system and verify the effectiveness of proposal method through the result of computer simulation.

  • PDF