• 제목/요약/키워드: PID controls

Search Result 79, Processing Time 0.022 seconds

Fuzzy-based Hybrid Fuzzy-Sliding Mode Controller for the Speed Control of a Hydraulic Inverter Controller (유압식 인버터 제어기의 속도제어를 위한 퍼지기반 하이브리드 슬라이딩모드 제어기 설계)

  • 한권상;최병욱;안현식;김도현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.218-226
    • /
    • 2003
  • Due to the friction characteristics of pump, cylinder packing and passenger car, in the elevation system actuated with hydraulic inverter, there exist dead zones. which cannot be controlled by a PID controller. To overcome the drawbacks, in this paper, we propose a new hybrid fuzzy-sliding mode control scheme, which controls the controller output between a sliding mode control output and a PID control output by fuzzy control method. The proposed hybrid control scheme achieves an improved control performance by using both controllers. We first propose a design method of the hybrid controller far a hydraulic system controlled by inverters, then propose a design method of a hybrid fuzzy-sliding mode centre] scheme. The effectiveness of the proposed control scheme is shown by simulation results, in which the proposed hybrid control method yields better control performance then the PID controlled scheme, not only in the zero-crossing speed region but also in the overall control region including steady-state region.

Experimental Characteristics of the Electro-Pneumatic Proportional Modulator (비례 모듈레이터 특성)

  • Yun S.;Choi B.O.;Kim C.Y.;Park P.W.;Lee G.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1784-1787
    • /
    • 2005
  • In this paper, proportional modulator which controls the second pressure of the pneumatic system was studied and proportional operating of modulator was gotten by two digital valves that have a fast dynamic characteristics and were controlled by PWM operating method. In order to more precision pressure control, this modulator consist of not only high speed two digital valves but also pressure sensor, measurement equipment and controller having a microprocessing function. In this study, for the development of the new proportional modulator, various research such as PWM control method, test equipment manufacturing, testing and evaluation were accomplished.

  • PDF

Output Voltage Control Method of a Switched Reluctance Generator using Turn-off Angle Control (소호각 제어를 이용한 Switched Reluctance Generator의 출력 전압 제어)

  • 김영조;전형우;김영석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.7
    • /
    • pp.356-363
    • /
    • 2001
  • A SRG (Switched Reluctance Generator) has many advantages such as high efficiency, low cost, high-speed capability and robustness compared with other of machine. But the control methods that have been adopted for SRGs are complicated. This paper proposes a simple control method using the PID controller which only controls turn-off angles while keeping turn-on angles of SRG constant. In order to keep the output voltage constant, the turn-off angle for load variations is controlled by using linearity between the generated current and turn-off angle since the reference generated current can be led through the voltage errors between the reference and the actual voltage. The suggested control method enhances the robustness of this system and simplifies the hardware and software by using only the voltage and the speed sensors. The proposed method is verified by experiments.

  • PDF

Design of Fuzzy-Power Controller for a Pump with Electric Proportional Valve (절자 비례 밸브를 갖는 펌프의 퍼지-동력제어기 설계)

  • 전순용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.441-447
    • /
    • 1998
  • Motivated by a recent work, a fuzzy-power-controller(FPC) is designed for the relieving-horsepower control of output variable pump with electrical proportional valve and actually implemented on the industrial excavator. In order to calculate the output power of pump with input of FPC, a linear discrete time model of load system to pump is obtained and the result is applied to control the engine-pump coupled system by software without pressure and flow sensor. The FPC controls the engine and pump coupled system by relieving horsepower control according to the change of load and the running conditions in relieving horsepower control are selected by fuzzy inference engine. A case study is peformed through the construction of the control device and installation on the excavator. It shows that the relieving-horsepower control system with the FPC, as suggested in this paper, is superior to the conventional PID controllers. And also, the excavator, with the FPC, shows that the power-loss of the coupled system is reduced and the running speed of the hydraulic actuator is enhanced.

  • PDF

Active Vibration Control of a Cantilever Beam using Electromagnetic Actuators

  • Kangwoong Ko;Sooyoung Choi;Kiheon Park
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.65-71
    • /
    • 2002
  • In this paper, an experiment for the active vibration control of a cantilever beam uses electromagnet as an actuator and uses a laser sensor to measure the position of the bending beam, constituting a non-contacting control system. A mathematical model of the overall system is derived to analytically design an appropriate controller. Dynamic equations of the electromagnetic actuator and the beam are combined to find the transfer function from the actuator to the sensor. The effectiveness of the obtained model is verified by various experiments and an improper PID controller is designed based on the obtained model. According to analysis, the coefficient of the derivative controller is the most important parameter for handling the performance and the stability margin of the control system. The experimental results of the active control system are compared with those of the open loop system.

  • PDF

Experimental Studies of Balancing an Inverted Pendulum and Position Control of a Wheeled Drive Mobile Robot Using a Neural Network (신경회로망을 이용한 이동로봇 위의 역진자의 각도 및 로봇 위치제어에 대한 연구)

  • Kim, Sung-Su;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.888-894
    • /
    • 2005
  • In this paper, experimental studies of balancing a pendulum mounted on a wheeled drive mobile robot and its position control are presented. Main PID controllers are compensated by a neural network. Neural network learning algorithm is embedded on a DSP board and neural network controls the angle of the pendulum and the position of the mobile robot along with PID controllers. Uncertainties in system dynamics are compensated by a neural network in on-line fashion. Experimental results show that the performance of balancing of the pendulum and position tracking of the mobile robot is good.

A Simulation of Temperature Control of Greenhouse with Hot-Water Heating System (온수난방시스템 온실의 온도제어 시뮬레이션)

  • 정태상;하종규;민영봉
    • Journal of Bio-Environment Control
    • /
    • v.8 no.3
    • /
    • pp.152-163
    • /
    • 1999
  • It is required to analyze the controlled response of air temperature in greenhouse according to control techniques for precise control. In this study, a mathematical model was established for air heating of greenhouse with hot-water heating system The parameters of the model were decided by regression analysis using reference data measured at the greenhouse being heated In the simulation for the digital control of air temperature in the greenhouse, the mathematical model to evaluate the control performances was used. Tested control methods were ON-OFF contpol, p control, rl control and PID control. The mathematical model represented by inside air temperature ( T$_{i}$), hot-water temperature (T$_{w}$) in heating pipe and outside air temperature (T$_{o}$) was expressed as a following discrete time equation ; T$_{i}$($textsc{k}$+1)= 0.851.T$_{i}$($textsc{k}$)+0.055.T$_{w}$($textsc{k}$)+0.094.T$_{o}$($textsc{k}$) Control simulations for various control methods showed the settling time, the overshoot and the steady state nor as follows; infinite time, 3.5$0^{\circ}C$, 3.5$0^{\circ}C$ for ON-OFF control : 30min 2.37$^{\circ}C$, 0.51$^{\circ}C$ for P control; 21min, 0.0$0^{\circ}C$, 0.23$^{\circ}C$ for PI control; 18min 0.0$0^{\circ}C$, 0.23$^{\circ}C$ for PID control, respectively. PI and PID controls appeared to be optimal control methods. There was no effect of differential gain on the heating process but much effect of integral gain on it.on it.

  • PDF

Digital control of active magnetic bearing using digital signal processor

  • Shimomachi, T.;Ishimatsu, T.;Taguchi, N.;Fukata, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.760-765
    • /
    • 1989
  • Digital control laws are implemented on an active magnetic bearing system with DSP. The results of tests using a experimental apparatus are (1) in a case that conventional PID, PIDD2 controls are employed, implemention of digital control law has similar characteristics to that of analogue control law. (2)The experiments reveal the results that the dynamic compensation based on the observer may be better than that of the other conventional controllers.

  • PDF

A Study on Synchronization Control Technique of Dual-Servo Press System (듀얼 서보모터 구동형 프레스 시스템의 동기화 제어기법 연구)

  • Na, Sang-Gun;Kwon, O-Shin;Kang, Jae-Hoon;Heo, Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.206-215
    • /
    • 2013
  • In this paper, a synchronization control technique of dual-servo motor driven press system is proposed. An independent cascade PID control technique has been applied to the conventional press system for advancement of control stability. However, it is not easy to reduce synchronous error using the independent cascade PID control technique when some different load disturbances are involved in each motor. The eccentric error of the slide caused by the problem degrade the control performance of the BDC(Bottom Dead Center). In order to achieve reduction of the synchronous error between two servo motors and accurate position control simultaneously, a new control scheme comprised with cascade PID control loop and cross-coupling loop is proposed. In simulation using Matlab SIMULINK, the AC servo system is designed. The control performance of proposed technique is compared with conventional control technique to the model of AC servo system. Also, the sub-scale model of dual-servo motor driven press system which can replicate the slide motion is constructed for experimental verification for the performance of the proposed control technique. The cross-coupling control technique reveals more precise and stable performances in the position and synchronization controls.

On the Full Stand Modeling and Tension Control for the Hot Strip Finishing Mill with PID Structure

  • Ahn, Byoung-Joon;Park, Ju-Yong;Chang, Yu-Shin;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1062-1073
    • /
    • 2004
  • We describe a looper controller design for a hot strip finishing mill in steel plants. The main function of the looper system is to balance the mass flow of the strip by accumulating material in the middle of the stands. Another function is to control the strip tension which influences the width of the strip. To ensure strip quality, it is very important to control the tension of the hot strip finishing mill. However, because there is a mutual interaction between the looper angle and the strip tension, it is difficult to control the looper system. Previous researches examined only the operation of a single stand. But it is not sufficient to examine the operation and effect of whole stands because the operation is wholly interdependent. In this paper, we present a full model of the hot strip finishing mill in order to more effectively control strip tension. We propose several control methods for the full-stand hot strip finishing mill, denoted as conventional PI, PI with cross gain, and coefficient diagram method (CDM) PID control. In the real plants, there are some problems by using higher order controllers such as LQ, LQG and H$\_$$\infty$/. By comparison, the PID controller is very simple and easy to apply to all real plants. To that end, we present our findings on PID controls and their potential use in the hot strip finishing mill.